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Abstract

In visible light communication (VLC), safety reasons impose peak- and average-
power constraints on the transmitted signal. Moreover, hardware considerations
have been seen to subject the input to an additional second-moment constraint. This
semester thesis will study the lower bounds of the channel capacity of multiple-input
single-output (MISO) optical free-space communication systems with peak-limited
antennas subjected to first- and second-moment constraints on the input vector. A
tight lower bound is given in the case where moment constraints may be alleviated,
and an open-form lower bound is offered when all constraints are active.
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Chapter 1

Introduction

Optical wireless communication (OWC) is a communication method that uses light
waves (visible, infrared or ultraviolet) to transmit information wirelessly through free
space. Compared to traditional radio frequency (RF) wireless communication, infor-
mation is encoded in OWC signals by modulating the signal’s real-valued intensity,
rather than the amplitude of a complex-valued signal. The widespread use of IM/DD
(intensity-modulation-direct-detection) systems is a good motivation to further ex-
plore such channels’ capacities. Due to safety and hardware reasons, the transmit-
ted signal must satisfy peak-power, as well as first- and second-moment constraints.
We will use the nomenclature of peak-power, average-power and electrical-power
to denote all three constraints. A. Lapidoth et al. [1] have already offered channel
bounds for single-input and single-output (SISO) optical free-space channels under
peak-power and average-power constraints. Moreover, M. Wigger et al. [2] have
extended capacity results to SISO channels under all three constraints.

Among various types of OWC systems, the Multiple-Input Single-Output (MISO)
system is a popular configuration that utilizes multiple transmitters and a single
receiver. With the same logic, constraints must be applied to the input vector.
First- and second-moment constraints thus become one- and two-norm constraints,
and the peak-power constraint is still applied to every element of the input.

This paper will combine multiple previous results on (constrained) optical free-
space channels to derive capacity bounds on optical MISO channels with a yet-to-be
explored second-moment constraint. The derivations in this paper will principally be
based off of the aforementioned literature. We will start off by detailing the channel
model in Section 1.1. Section 1.2 will present the optimal structure to channel
inputs, which will allow us to derive alternative channel capacity formulations in
Chapter 2. Chapter 3 will offer lower bounds to channel capacity, and Chapter 4
will discuss numerical simulation results of a toy example.
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1.1 Channel Model
The channel model considered in this paper is the same as the one studied by Ma,
Moser, Wigger and Wang [3]: a multiple-input and single-output (MISO) antenna
system of the form

X̄ = hTX, (1.1)

where h = (h1, ..., hnT
)T is a constant channel state vector and X is an nT -

dimensional channel input vector. A visual representation is offered in Figure 1.1.
We call the weighted sum of inputs X̄ the channel image. To avoid degeneracy
of solutions and without loss of generality, we will consider that the channel state
vector is ordered:

h1 > h2 > ... > hnT
> 0. (1.2)

X1 h1

X2 h2

...

XnT hnT

X̄

Z

+ Y

Figure 1.1: Channel Model Diagram

Moreover, each Xi-component of X is non-negative, and for reasons mentioned
in [1], X̄ can be considered as corrupted with additive Gaussian noise Z ∼ N (0, σ2)
from a combination of thermal, shot, and relative-intensity noise. Hence, our chan-
nel output is given by

Y = X̄ + Z (1.3)

Inputs will be subjected to three types of constraints: peak- , average- and electrical-
power constraints:

Xi ∈ [0,A] ∀i ∈ {1, ..., nT }, (1.4)
P [Xi > A] = 0 ∀i ∈ {1, ..., nT }, (1.5)

E[∥X∥1] ≤ E , (1.6)
E
[
∥X∥22

]
≤ V, (1.7)

for some fixed parameters E ,V,A ≥ 0. We will denote the ratio between the
average-power constraint and the allowed peak-power by α1, and the ratio between
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the electrical-power and the peak-power by α2. Thus we have

α1 ≜
E
A
, (1.8)

α2 ≜
V
A2

. (1.9)

Note that [2] treats all three constraints as well, but only on SISO channels.
Also note that α1 and α2 are not unrelated: by the L1-L2 norm inequality, the
expected norms of the channel input must satisfy:√

E[∥X∥22] ≤ E[∥X∥1]. (1.10)

The utility of this rather obvious result will come in handy in Chapter 2 when
observing whether average- and electrical-power constraints are active or not.

We will denote the capacity of the channel (1.1) with allowed peak-power A and
allowed first- (resp. second-) moment α1A (resp. α2A

2) as ChT,σ2

(
A, α1A, α2A

2
)
.

A general form of the capacity is given in [4]:

ChT,σ2

(
A, α1A, α2A

2
)
≜ sup

QX

I(X, Y ) (1.11)

where the supremum is taken over all laws QX satisfying 1.4-1.7.

1.2 Minimum-Energy Signaling
In this section we will briefly present the signaling scheme for our channel model.
It is the subject of [3], which covers in detail the entire process.

1.2.1 Optimal Channel Input Vector
Ma et al. [3] take a weighted sum approach to the mixed vector-norm minimization
and propose an optimal channel input vector x by inspecting the Karush-Kuhn-
Tucker (KKT) conditions of the objective function

x 7→ λ · ∥x∥1
A

+ (1− λ) · ∥x∥
2
2

A2
. (1.12)

The derived solution is presented in [3, Lemma 9], and is defined for a fixed value
of λ ∈ [0, 1]. Since channel capacity bounds for the case of λ = 1 have already
been treated in [5], we will also (as in [3]) only focus on the case of λ ∈ [0, 1).
The choice of λ will induce a particular partition of the channel image into various
sub-intervals, denoted Iℓ,k (see [3, Definitions 5 & 7]), which we recall here for
context.

Definition 1. Set κ0 ≜ 0. For each index ℓ ∈ {1, ..., nT }, define the integer

κℓ ≜ max

{
j ∈ {ℓ, ..., nT } :

ν

2

(
hℓ

hj
− 1

)
< 1

}
; (1.13)
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define the point

tℓ ≜ A

ℓ∑
i=1

hi +A

κℓ∑
i=ℓ+1

(
h2
i

hℓ
+

ν

2

(
h2
i

hℓ
− hi

))
; (1.14)

and finally, for every k ∈ {κℓ−1 + 1, ..., κℓ}, define

sk ≜ A

ℓ−1∑
i=1

hi +A

k−1∑
i=ℓ

ν

2

(
h2
i

hk
− hi

)
. (1.15)

[3, Remark 6] explains that these points represent thresholds on x̄ corresponding
to when the ℓth antenna should be set to full , and when the kth antenna should be
switched on. Lastly, κk indicates how many antennas should be switched on before
the kth antenna is fixed to maximum value A.

Definition 2. For any ℓ ∈ {1, ..., nT } for which κℓ < κℓ−1, define the sub-intervals

Iℓ,k≜


[tℓ−1, sk+1] if k = κℓ−1

[sk, sk+1] if κℓ−1 < k < κℓ

[sk, tℓ] if k = κℓ

(1.16)

For any ℓ ∈ {2, ..., nT } for which κℓ−1 = κℓ, define the sub-interval

Iℓ,∅ ≜ [tℓ−1, tℓ] (1.17)

From these sub-intervals we can construct the optimal input vector, denoted
xmin,λ(x̄). It is given in [3, Eq. (26), Lemma 9]. The signaling scheme is as follows:
conditionally on x̄ ∈ Iℓ,k, the (ℓ−1) strongest antennas are set to full power, while
the (nT −k) weakest are switched off. The remaining (k−ℓ+1) antennas transmit
in a shifted beamforming manner. The double-indexing with (ℓ, k) thus denotes
how many antennas should be set to full power and how many antennas should be
switched on respectively.

1.2.2 Characterization of Input Distribution
Now recall Theorem 12 of [3], which states that the desired channel image X̄ can
be generated with a random input vector X if, and only if, there exists a λ ∈ [0, 1]
such that

EX̄ [m(X̄, λ)] ≤ α1A, (1.18)
EX̄ [v(X̄, λ)] ≤ α2A

2, (1.19)

where m(·, ·) and v(·, ·) are defined in [3, Eq. (27)-(28)]. They correspond to the
one- and two-norm of xmin,λ(x̄) respectively.

With this result in hand, we will consider a fixed value of λ ∈ [0, 1) and combine
the conditions (32a)-(32b) of [3] into one. Let

E
[
ρ(X̄, λ)

]
≜ λ ·

E
[
m(X̄, λ)

]
A

+ (1− λ) ·
E
[
v(X̄, λ)

]
A2

, (1.20)
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then we have that

E
[
ρ(X̄, λ)

]
≤ λ · α1 + (1− λ) · α2︸ ︷︷ ︸

≜α

. (1.21)

We now have a single condition which must be satisfied in order for X̄ to be properly
generated. Note that choosing to solve for a fixed λ does not create impossible
cases, as there will always exist a corresponding (α1, α2)-pair to each fixed λ, α.
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Chapter 2

Capacity Formulations

2.1 Preliminaries
We will introduce a two-dimensional random variable V = (V1, V2)

T over the ad-
missible values of (ℓ, k) pairs such that(

V = (ℓ, k)

)
⇐⇒

(
X̄ ∈ Iℓ,k

)
. (2.1)

The channel state vector h’s 1- and 2-norms will be thoroughly used, as well as
truncated norms. To this goal, we will use the following to denote the truncated
norms:

∥hk
ℓ ∥1 ≜

k∑
i=ℓ

hi, (2.2)

∥hk
ℓ ∥22 ≜

k∑
i=ℓ

h2
i . (2.3)

Moreover, we will denote Pr[V = (ℓ, k)] ≜ pℓ,k for brevity.

Remark 3. We denote admissible values of (ℓ, k) the pairs those recalled in Defi-
nition 1. △

2.2 Capacity: General Case and Less Constraints
We start with a general result.

Lemma 4 (Capacity in Terms of Channel Image). The MISO channel capacity
can be expressed in terms of a SISO channel capacity, where the input is the channel
image X̄. Namely,

ChT,σ2(A, α1, α2, λ) ≜ max
QX̄

I(X̄;Y ) (2.4)
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where QX̄ is the set of admissible distributions. The conditions on these distribu-
tions will be explored and derived in subsequent propositions.

Proof. [5, Section III] proves the same result by noticing that X ⊸−− X̄ ⊸−− Y
forms a Markov chain, and since X̄ is a function of X, then

I(X̄;Y ) = I(X;Y ). (2.5)

We recall [5, Propositions 1 & 2], which derive results on MISO channels only
under average- and peak-power constraints respectively. We translate these results
to our new case.

If X is only subjected to first- and second-moment constraints without a peak-
power constraint, then it is reduced to a SISO case.

Proposition 5 (No Peak-Power Constraint). Without a peak-power constraint,

ChT,σ2(A, α1, α2, λ)= max
QX̄ :X̄∈[0,∞]

E[X̄]≤h̃E
E[X̄2]≤h̃2V

I(X̄;Y ) = C1,σ2(h̃E , h̃2V) (2.6)

where h̃ =
√
∥hnT

1 ∥1h1 and C1,σ2(h̃E , h̃2V) denotes the capacity of a SISO channel
with unit channel gain and first- and second-moment constraints, as studied in [2].

Proof. When X satisfies (1.6)-(1.7), then we have

E
[
X̄
]
=

nT∑
k=1

hk E[Xk]

≤ h1E

≤
√
∥hnT

1 ∥1h1E

= h̃E (2.7)

and

E
[
X̄2
]
= ∥hnT

1 ∥21 · E

 1

∥hnT
1 ∥21

(
nT∑
k=1

hkXk

)2


i)

≤ ∥hnT
1 ∥21 · E

[
nT∑
k=1

hk

∥hnT
1 ∥1

X2
k

]
ii)

≤ ∥hnT
1 ∥1h1 E

[
nT∑
k=1

X2
k

]
≤ h̃2V. (2.8)

where i) is by Jensen’s inequality, and ii) is done as in the inequality of E
[
X̄
]
.

Conversely, any distribution satisfying E
[
X̄
]
≤ h̃E and E

[
X̄2
]
≤ h̃2V can be

generated by sending X̄
h̃

on the transmitter corresponding to h1 and setting all
others to zero.
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We recall [6, Proposition 1], which states that in the case of peak- and average-
power constraints, when α ≥ nT

2 , the average-power constraint is dropped. This is
due to the capacity-achieving distribution being symmetric around A

2 . We can now
derive the following condition on α1, α2.

Lemma 6. When α1 ≥ nT

2 , the average-power constraint is dropped, and when

α2 ≥ n2
T

4 , the electrical-power constraint is dropped.

Proof. Proving first part is the same as proving [6, Proposition 1]. The second part
is proven by invoking the L1-L2 inequality on the input vector.

We however note that the case where one moment-constraint is active and not
the other is not the subject of this paper. It is of more interest when either both
moment-constraints are active, with or without a peak-power constraint. The case
of no electrical-power constraint is the subject of [5], and the case of no average-
power constraint would be superfluous, as the L1-L2 inequality on the input vector
norm tells us that electrical-power constraints can be directly imposed by setting
average-power constraints. We thus skip these cases and go on to present the result
for a channel where α1 ≥ nT

2 , α2 ≥ n2
T

4 .

Proposition 7 (Only Peak-Power Constraint). When α1 ≥ nT

2 and α2 ≥ n2
T

4 ,
then:

ChT,σ2(A, α1, α2, λ) = max
QX̄ :X̄∈[0,∥hnT

1 ∥1A]
I(X̄;Y ) (2.9)

= C1,σ2(∥hnT
1 ∥1A,

∥hnT
1 ∥1A
2

) (2.10)

where C1,σ2(∥hnT
1 ∥1A,

∥hnT
1 ∥1A

2 ) denotes the capacity of a SISO channel with unit

gain with allowed peak-power ∥hnT
1 ∥1A and allowed average-power ∥hnT

1 ∥1A

2 .

Proof. Since both conditions are inactive, we can safely reduce the situation to [5,
Proposition 2], giving us the desired result.

We will now turn to the case where both constraints are active.

2.3 Capacity Under all Constraints
Similarly to [5], the set of admissible distributions gets complicated when both
α1 < nT

2 and α2 <
n2
T

4 . To clearly define these distributions, we will use one of the
main results of [3]. By the new mixed constraint (1.21), we will now denote the
channel capacity by ChT,σ2(A, α).

Proposition 8 (Channel Capacity with Active Peak-Power, First- and Sec-
ond-Moment Constraints). When α < λ · nT

2 +(1−λ) · n
2
T

4 , the channel capacity
is given by

ChT,σ2(A, α) ≜ max
QX̄

I(X̄;Y ) (2.11)
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where the maximization is over all laws on X̄ ∈ R+
0 satisfying

Pr[X̄ > ∥hnT
1 ∥1A] = 0, (2.12)

and

E
[
ρ(X̄, λ)

]
=
∑
ℓ,k

pℓ,k

[
µ(λ, ℓ, k) + (1− λ) · E

[
(X̄ − sℓ,k)

2

A2∥hk
ℓ ∥22

|V = (ℓ, k)

]]
≤ α, (2.13)

where µ(λ, ℓ, k) ≜ (ℓ− 1) + (1−λ)ν2−2λν
4 (k − ℓ+ 1), ν ≜ λ

1−λ , and
sℓ,k ≜ A

∑ℓ−1
i=1 hi +

νA
2

∑k
i=ℓ hi.

Proof. Recall Section 1.2. We may now derive our desired distributions by only tak-
ing into account minimum-energy input vectors, thus simplifying the mixed moment
constraint for X̄ ∈ Iℓ,k. We will denote X̄ ∈ Iℓ,k as X̄ℓ,k for convenience:

E
[
ρ(X̄ℓ,k, λ)

]
≜

λ

A
· E
[
m(X̄ℓ,k, λ)

]
+

1− λ

A2
· E
[
v(X̄ℓ,k, λ)

]
(2.14)

= λ ·

(
(ℓ− 1)− (k − ℓ+ 1)

ν

2
+

(
E
[
X̄ℓ,k

]
− sℓ,k

A∥hℓ,k∥22

)
∥hℓ,k∥1

)

+(1− λ) ·

(
(ℓ− 1) + (k − ℓ+ 1)

ν2

4
+

E
[
(X̄ℓ,k − sℓ,k)

2
]

A2∥hℓ,k∥22

)

−λ ·

(
E
[
X̄ℓ,k

]
− sℓ,k

A∥hℓ,k∥22

)
∥hℓ,k∥1

= (ℓ− 1) + (k − ℓ+ 1) ·
(
(1− λ)ν2

4
− λν

2

)
︸ ︷︷ ︸

≜µ(λ,ℓ,k)

+ (1− λ) · E
[
(X̄ℓ,k − sℓ,k)

2

A2∥hℓ,k∥22

]
. (2.15)

Hence over all Iℓ,k, by law of total probability the overall constraint becomes Eq.
(2.13).

Thus, we are able to see that our mixed moment constraint actually implies only
a second moment constraint on (X̄ − sℓ,k) conditionally on V = (ℓ, k). This will
be exploited to derive channel capacity bounds.
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Chapter 3

Lower Bounds with all
Constraints Active

Throughout this section it will be assumed that both moment constraints are active.
A useful threshold value will be the following:

αth ≜
1

A∥hnT
1 ∥1

∑
ℓ,k

(bℓ,k − aℓ,k)µ(λ, ℓ, k) (3.1)

+
(1− λ)

A3∥hnT
1 ∥1

∑
ℓ,k

(
(bℓ,k − sℓ,k)

3 − (aℓ,k − sℓ,k)
3

3∥hk
ℓ ∥22

)
.

We will see in the following propositions that the bounds differ, depending on
whether α ⋛ αth. It turns out that this threshold is the smallest value α can take
where X̄ can be uniformly distributed over [0, ∥hnT

1 ∥1A]. We will show this in the
proof of Proposition 10.

We start off by lower-bounding the channel capacity with the Entropy Power
Inequality (EPI), proposed by Shannon in 1949, stated in [7, Theorem 17.7.3].

Lemma 9 (Capacity Lower Bound). The channel capacity is lower-bounded by

ChT,σ2(A, α) ≥ 1

2
log

(
1 +

e2h(X̄)

2πeσ2

)
(3.2)

where h(·) denotes the differential entropy.

Proof. We first expand the channel capacity and lower-bounding by the mutual
information:

ChT,σ2(A, α) ≥ I(X̄;Y ) (3.3)
= I(X̄; X̄ + Z) (3.4)
= h(X̄ + Z)− h(Z) (3.5)
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i)

≥ 1

2
log
(
e2h(X̄) + e2h(Z)

)
− h(Z) (3.6)

=
1

2
log

(
1 +

e2h(X̄)

2πeσ2

)
(3.7)

where i) is due to the EPI. We may apply it since the additive Gaussian noise Z is
considered to be independent of the channel image.

From the expression in (3.2), notice that a tight lower bound can be found by
saturating both inequalities. This is possible by finding a valid input distribution to
X̄ which successfully maximizes h(X̄) under the constraint (2.13), which leads us
to our first capacity lower bound.

3.1 Lower Bound for α ≥ αth

Proposition 10 (Lower Bound when α ≥ αth). When α ≥ αth, the capacity is
lower-bounded as:

ChT,σ2(A, α) ≥ 1

2
log(1 +

∥hnT
1 ∥21A2

2πeσ2
) (3.8)

Proof. As mentioned in the beginning of Section 3, we will choose X̄ to be uni-
formly distributed over [0, ∥hnT

1 ∥1A]. With such a distribution, notice that Pr[V =
(ℓ, k)] = pℓ,k must be

pℓ,k ≜
|Iℓ,k|
∥hnT

1 ∥1A

=
bℓ,k − aℓ,k
∥hnT

1 ∥1A
. (3.9)

This distribution of X̄ obviously satisfies (2.12), as well as (2.13) because

EU [ρ(X̄, λ)] =
∑
ℓ,k

bℓ,k − aℓ,k
A∥hnT

1 ∥1

(
µ(λ, ℓ, k)− 2(1− λ)sℓ,k

A2∥hk
ℓ ∥22

bℓ,k + aℓ,k
2

+
1− λ

3A2∥hk
ℓ ∥22

(b2ℓ,k + aℓ,kbℓ,k + a2ℓ,k) +
(1− λ)s2ℓ,k
A2∥hk

ℓ ∥22

)
=

1

A∥hnT
1 ∥1

∑
ℓ,k

(bℓ,k − aℓ,k)µ(λ, ℓ, k)

+
1− λ

A3∥hnT
1 ∥1

∑
ℓ,k

(
−sℓ,k

b2ℓ,k − a2ℓ,k
∥hk

ℓ ∥22
+

b3ℓ,k − a3ℓ,k
3∥hk

ℓ ∥22
+ s2ℓ,k

bℓ,k − aℓ,k
∥hk

ℓ ∥22

)

=
1

A∥hnT
1 ∥1

∑
ℓ,k

(bℓ,k − aℓ,k)µ(λ, ℓ, k)

+
(1− λ)

A3∥hnT
1 ∥1

∑
ℓ,k

(
(bℓ,k − sℓ,k)

3 − (aℓ,k − sℓ,k)
3

3∥hk
ℓ ∥22

)
= αth. (3.10)
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Thus, we have that the differential entropy of X̄ given by

h(X̄) = log(A∥hnT
1 ∥1), (3.11)

which we can directly plug into the RHS of (3.2), yielding our desired result. Our
capacity is thus lower-bounded by (3.8) when α ≥ αth.

Remark 11. A expected, αth does not depend on A. Notice that aℓ,k, bℓ,k and sℓ,k
can have A factored out, thus cancelling out those in the denominator of (3.10). △

3.2 Lower Bound for α < αth

In this section we will consider the case where α < αth, i.e. when a uniformly
distributed channel image is not possible. The optimization of h(X̄) this time is
much less straightforward. The following will cover the derivations leading to an
open-form optimization, unfortunately without an analytical solution. We start by
expanding the differential entropy of X̄:

h(X̄) = h(X̄)− h(X̄|V ) + h(X̄|V ) (3.12)
= I(X̄;V ) + h(X̄|V ) (3.13)
= H(V )− H(V |X̄) + h(X̄|V ) (3.14)
i)
= H(p) +

∑
ℓ,k

pℓ,kh(X̄|V = (ℓ, k)), (3.15)

where i) is due to the non-overlapping property of the Iℓ,k partition of X̄ (explained
in [3, Lemma 8]).

Looking at (2.13), we notice that conditionally on x̄ ∈ Iℓ,k, we may consider
a partition of α into per-interval energy allocations. We now define a vector α ≜
(α1,1, ...αnT ,κnT

)T such that

E
[
ρ(X̄, λ)|X̄ ∈ Iℓ,k

]
= αℓ,k, (3.16a)∑

ℓ,k

pℓ,kαℓ,k = α. (3.16b)

Note that any distribution of X̄ satisfying (3.16) automatically satisfies (2.13). The
maximization of h(X̄) in (3.15) is now twofold: we must optimize over p as well
as find the optimal energy-allocation vector α under the constraints (3.16). Notice
how the two vectors are related: p denotes the probability of the channel image
being in a particular interval, and α denotes the energy allocation in said interval.
The probability mass vector will thus scale each component of α, while α itself sets
the distribution parameters.

3.2.1 Conditional Max-Entropy Distribution
We will now derive max-entropy distributions of X̄, conditional on X̄ ∈ Iℓ,k.
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Lemma 12 (Interval-wise Max-Entropy Distribution). Conditionally on X̄ ∈
Iℓ,k, the differential entropy maximizing distribution of X̄ℓ,k subjected to (3.16) is
given by

f∗
X̄ℓ,k

(x̄) ≜
1

Aθℓ,k∥hk
ℓ ∥2
·
ϕ
(
− (x̄−sℓ,k)

2

2A2θ2
ℓ,k∥h

k
ℓ ∥

2
2

)
Zℓ,k

, θℓ,k > 0, (3.17)

where

Zℓ,k ≜ Φ(bℓ,k(θℓ,k))− Φ(aℓ,k(θℓ,k)), (3.18)

and ϕ(·),Φ(·) are the normal probability distribution and cumulative distribution
functions, respectively.

Proof. Let g̃ be the following:

g̃ : x̄
△7→ (x̄− sℓ,k)

2

A2∥hk
ℓ ∥22

· 1{x̄ ∈ Iℓ,k} (3.19)

The constraint (3.16) can thus be re-written as

E
[
g̃(X̄ℓ,k)

]
=

αℓ,k − µ(λ, ℓ, k)

1− λ
. (3.20)

Applying [7, Theorem 12.1.1], we get that the distribution maximizing h(X̄|X̄ ∈
Iℓ,k) is of the form:

f∗
X̄ℓ,k

(x̄) = e−γ0,ℓ,k−γ1,ℓ,kg̃(x̄). (3.21)

By substituting 1
2θ2

ℓ,k
≜ γ1,ℓ,k and then normalizing over Iℓ,k with the appropriate

value of γ0,ℓ,k, we get exactly the distribution in (3.17).

3.2.2 Solving Distribution Parameters
We thus have that X̄ is a concatenation of truncated Gaussian random variables,
each restricted to Iℓ,k = [aℓ,k, bℓ,k]. Over each of these non-overlapping intervals,
(3.16) must be satisfied, which we can now compute1 with our newfound distribution
f∗
X̄ℓ,k

from (3.17).

Ef∗
X̄ℓ,k

[
ρ(λ, X̄)|X̄ ∈ Iℓ,k

]
≜ µ(λ, ℓ, k) + (1− λ) · E

[
(X̄ℓ,k − sℓ,k)

2

A2∥hk
ℓ ∥22

]
= µ(λ, ℓ, k)

+ (1− λ) · θ2ℓ,k(1 + ηℓ,k(θℓ,k))

!
= αℓ,k, (3.22)

1The full calculation is deferred to Appendix A.1.
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Figure 3.1: The ηℓ,k(·)-function over various θ-values for different choices of λ.
The dark blue and dark green lines are only plotted over values for which they are
well-defined.

with

ηℓ,k(θℓ,k) ≜
aℓ,k(θℓ,k)ϕ(aℓ,k(θℓ,k))− bℓ,k(θℓ,k)ϕ(bℓ,k(θℓ,k))

Zℓ,k
, (3.23)

and

aℓ,k(θℓ,k) ≜
aℓ,k − sℓ,k
Aθℓ,k∥hk

ℓ ∥2
, (3.24)

bℓ,k(θℓ,k) ≜
bℓ,k − sℓ,k
Aθℓ,k∥hk

ℓ ∥2
. (3.25)

Lemma 13 (Distribution Parameter Solution). For X̄ ∈ Iℓ,k distributed accord-
ing to (3.17) with parameter θℓ,k, then θℓ,k is the unique solution to the equation

ηℓ,k(θℓ,k) =
µ(λ, ℓ, k)− αℓ,k

θ2ℓ,k · (1− λ)
− 1, (3.26)

Proof. The form of (3.26) is a simple reformulation of (3.16) under max-entropy
distribution. Uniqueness is given by monotonicity of ηℓ,k(θℓ,k) in θℓ,k, which can be
observed in Figure 3.1.
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3.2.3 Evaluating Differential Entropy
The differential entropy of X̄ ∈ Iℓ,k is that of a normal distribution of mean sℓ,k
and variance A2θ2ℓ,k∥hk

ℓ ∥22, truncated over Iℓ,k. It is given by

h(X̄ ∈ Iℓ,k) = log(
√
2πeAθℓ,k∥hk

ℓ ∥2Zℓ,k)

+
aℓ,k(θℓ,k)ϕ(aℓ,k(θℓ,k))− bℓ,k(θℓ,k)ϕ(bℓ,k(θℓ,k))

2Zℓ,k︸ ︷︷ ︸
≜δℓ,k(θℓ,k)

= log(
√
2πeAθℓ,k∥hk

ℓ ∥2Zℓ,k) + δℓ,k(θℓ,k), (3.27)

with θℓ,k being the solution to (3.26) for each (ℓ, k). Thus

h(X̄) = H(p) + log(
√
2πeA) +

∑
ℓ,k

pℓ,k log

θℓ,k∥hk
ℓ ∥2Zℓ,ke

δℓ,k(θℓ,k)︸ ︷︷ ︸
≜Qℓ,k(θℓ,k)


= −D

(
p∥ Qℓ,k(θℓ,k)∑

ℓ,k Qℓ,k(θℓ,k)

)
+ log(

√
2πeA) +

∑
ℓ,k

logQℓ,k(θℓ,k)

(3.28)

In order to maximize (3.15), we must now optimize over both the probability mass
vector p and the per-interval energy allocation α, while satisfying αTp = α. This
culminates to the following capacity lower bound.

Proposition 14 (Lower Bound when α < αth). When α < αth, the channel
capacity is lower-bounded by

ChT,σ2(A, α) ≥ log

(
1 +

A2e2τ

σ2

)
(3.29)

with

τ ≜ sup
p:

∑
ℓ,k pℓ,k=1,

α:
∑

ℓ,k pℓ,kαℓ,k=α

{
−D

(
p∥ Qℓ,k(θℓ,k)∑

ℓ,k Qℓ,k(θℓ,k)

)
+
∑
ℓ,k

logQℓ,k(θℓ,k)

}

(3.30)

and where each θℓ,k is the solution to (3.26) for each (ℓ, k).

Unfortunately, an analytical method to perform the maximization of (3.30) has
yet to be found.
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Chapter 4

Numerical Simulation

Due to the lack of analytical optimization methods so far, we have attempted
to compute the maximization of h(X̄) numerically. This section will cover the
implementation and results obtained by simulating a toy example. The code was
written in the Python programming language.

4.1 Example Setup
We will consider a two-antenna system, with the following channel state vector

h ≜ [2.0, 1.0]T, (4.1)

and unit channel gain (i.e. A = 1). The goal was to implement a simulation with
a partition of X̄ = [0, 3.0] into three sub-intervals. The first one corresponding to
a transmission with only antenna 1, the second interval corresponding to shifted
beamforming mode, and the third corresponding to antenna 1 set to full, while
modulating only antenna 2. To this goal, we will fix

λ ≜ 0.25. (4.2)

Such a choice of λ sets the following sub-intervals:

• I1,1 ≜ [0, 1
3 ]

• I1,2 ≜ [ 13 , 2.416̄]

• I2,2 ≜ [2.416̄, 3.0]

Remark 15. Since the double-indexing is quite cumbersome for such a small exam-
ple, we will not employ it, and rather denote the intervals with single indices: 1, 2
and 3. △

Remark 16. λ was chosen arbitrarily, and multiple tests with other λ-values which
still generated a partition into three sub-intervals have been performed. We discuss
this later. △
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4.2 Numerical Solver
Algorithm 1 is a rather straightforward way to solve the optimization problem in
Eq. (3.30). It is a simple template we have used as a stepping stone to hopefully
inspire better solvers.

Algorithm 1 Optimization Algorithm for a partition of X into 3 sub-intervals

Input: α, λ,h
Θ← [0, 0, 0]
p← [0, 0, 0]
hmax ← −∞
α← [0, 0, 0]
for p1 ∈ [0, 1] do ▷ Iterating over probabilities

for p2 ∈ [0, 1− p1] do
p3 ← 1− p1 − p2
for α1 ∈ [0, α

p1
] do ▷ Iterating over energy allocation

for α2 ∈ [0, α−α1·p1

p2
] do

α3 ← (α− p1 · α1 − p2 · α2)/p3
θ2i ← result of solving (3.26) for every i
h← h(X̄)
if h > hmax then ▷ Storing optimal result so-far

hmax ← h
p← [p1, p2, p3]
α← [α1, α2, α3]
Θ← [θ21, θ

2
2, θ

2
3]

end if
end for

end for
end for

end for
Output: p,α,Θ, hmax

Remark 17. For the sake of brevity, some fine-tuning in Algorithm 1 has been
omitted. Namely that α2 (resp. α3) must be zero if p2 (resp. p3) equals zero; in
which case we solve Eq. (3.26) with both equal to zero. Also, we have not given
implementations of computing h(X̄) or finding the roots of (3.26). The former was
computer in a straightforward code translation of (3.15). The latter was numerically
performed using the built-in root-finder scipy.optimize.fsolve. △

4.3 Results and Discussion
Tables 4.1 and 4.2 will present the obtained results, and Figure 4.1 visualizes Table
4.1. Since the most error-prone part of the optimization lies in the finding the
θℓ,k-parameters (distribution parameters over every Iℓ,k), we have quantified the
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Fixed λ = 0.25

Values Allocated Energy α
0.4 0.42 0.47

θ21 0.0395821 0.1037130991 0.133155856415
θ22 0.15206302 0.1038154926 0.116576025792
θ23 0.26747476 0.3278110617 0.731420239186
α1 0.02641053 0.0272526315 0.027368421052
α2 0.4446739 0.4062559225 0.419050833020
α3 1.46545951 1.4830114177 1.531166889124
p1 0.21052711 0.21428649 0.1428579̄
p2 0.74697437 0.6975232 0.7610152̄
p3 0.04249852 0.08819027 0.0961267̄
hmax 0.93777075 0.95930191 1.00825641
ε(θ1) −1.5265 · 10−16 −1.94289 · 10−16 −1.3877 · 10−16

ε(θ2) −4.7184 · 10−15 −4.291012 · 10−14 −1.2379 · 10−12

ε(θ3) −5.5511 · 10−15 −1.830979 · 10−12 −4.1633 · 10−14

Table 4.1: Simulation Results using Algorithm 1 for a fixed λ and varying α

accuracy of our computed solution by simply evaluating Eq. (3.26) with the obtained
θℓ,k, as to make sure that the solver has actually converged. We denote this accuracy
by ε(θℓ,k), which corresponds to the difference between the computed and the
expected result.

First off, we notice that the maximal differential entropy increases as we allow
more energy, which is consistent with monotonic increase of transmission capabilities
in energy. Secondly, the accuracy of the solver seems quite good, as the error lies
in the order of machine-precision errors.

Lastly, recalling Section 1.2; we had briefly mentioned that both α and λ are
fixed. We note that it is also of interest how the capacity changes with a fixed
energy allocation and varying beamforming intervals Iℓ,k induced by λ. Due to
this, we have also performed numerical optimizations over a fixed α, and varying λ.
Results are given in Table 4.2 and displayed in Figure 4.2. Note that he different
choices of λ yielded different partitions of X̄ , which are given in Table 4.3.

Remark 18 (Reducing the Search Space). A clear way to yield better results is to
reduce the range of the iterations, especially for the α-components. As no analytical
bounds were of any meaning, we have simply proceeded by manually reducing the
search space. Another option would have been to allow the process to run over
more iterations over the same bounds. We have opted for the former, since the
latter yielded exponential runtime increases. △
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Figure 4.1: The simulated differential entropy maximizing distribution of X̄ using
results from Table (4.1). (λ = 1

4 )

Fixed α = 0.4

Values Trade-off Parameter λ
0.3 0.34 0.35

θ21 0.0766106 0.05737169 0.11334305
θ22 0.14184885 0.09866077 0.12270888
θ23 1.53114158 0.16041785 0.4193806
α1 0.04105263 0.05368421 0.06
α2 0.47014571 0.46171853 0.49352713
α3 1.54680101 1.38242224 1.47597066
p1 0.26315863 0.31579016 0.36842168
p2 0.69711293 0.61129312 0.56420176
p3 0.03972844 0.07291672 0.06737656
hmax 0.92822555 0.91764985 0.920063045
ε(θ1) −5.140332 · 10−14 −1.290634 · 10−15 −2.63123 · 10−14

ε(θ2) −1.11022 · 10−16 −6.328271 · 10−15 −3.79341 · 10−12

ε(θ3) −3.33067 · 10−16 −1.88088 · 10−12 −1.69864 · 10−14

Table 4.2: Simulation Results using Algorithm 1 for a fixed α and varying λ.
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Figure 4.2: The simulated differential entropy maximizing distribution of X̄ using a
fixed energy allocation α = 2

5 and varying trade-off parameter λ using results from
Table 4.2. Conversely to Table 4.1, the distributions are not defined over the same
sub-intervals. These are given in Table 4.3.

Partition λ = 0.3 λ = 0.34 λ = 0.35
I1 [0, 0.42857] [0, 0.51515] [0, 0.53846]
I2 [0.42857, 2.39285] [0.51515, 2.3712] [0.53846, 2.36538]
I3 [2.3928571, 3.0] [2.3712, 3.0] [2.36538, 3.0]

Table 4.3: Induced partitions of the channel image [0, 3] for various choices of λ.
The same desired structure of a partition into 3 sub-intervals is still held.
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Chapter 5

Conclusions and Outlooks

This semester thesis was a first dive into the derivations of upper- and lower-bounds
on the capacity of MISO optical free-space channels with additive Gaussian noise,
where the channel input vector is subjected to peak-power, first- and second-moment
constraints. We have found that capacity bounds are derivable by maximizing the
differential entropy h(hTX). The optimal input is found by considering minimum-
energy input vectors (given by [3]) and that conditional on a given range Iℓ,k, the
channel image should be distributed as a truncated Gaussian. The optimization is
thus performed over a partition of the energy constraint α and the probability mass
vector p such that αTp = α. The distribution parameters are found by solving a
per-interval energy constraint, given by each component of α.

Looking at Eq. (3.30), we notice that various optimization methods are possible.
Due to the non-linear nature of the constraints, no linear program seems to be a
good solution. However, the problem could potentially be solved using a non-linear
optimization technique, such as the Karush-Kuhn-Tucker conditions. This is just
considerations, and has not been tested by any means.

We have opted for a numerical simulation of a simple example, as to hopefully
give us some insights on analytical results. The expected hypothesis of differential
entropy increasing under more allowed energy with a fixed λ seems to hold, as seen
in Table (4.1). We note however that the nature of the problem is more as seen in
Table (4.2), where we can see that certain values of λ will yields higher differential
entropy. We suggest that this approach be taken in further tests. By fixing α and
iterating over λ, we could successfully find the optimal trade-off parameter for a
certain energy constraint.

A clear extension aside from finding an optimization routine to solve Eq. (3.15)
would be to find upper bounds to the channel capacity. An idea developed but
not concluded during this work was to mimic the upper bound derivations in [5,
Proposition 10] with the SISO capacity upper-bound offered in [2]. An optimal
distribution of X̄ is however still required. With both results in hand, asymptotic
results for high-SNR could be derived.
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Appendix A

Calculations

A.1 Developing Interval-wise Constraints
Here we will offer the full calculations leading to Eq. (3.26). We begin by computing

Ef∗
X̄ℓ,k

[g̃(X̄)|V = (ℓ, k)] =

∫ bℓ,k

aℓ,k

(x̄− sℓ,k)
2

A2∥hk
ℓ ∥22

· f∗
X̄ℓ,k

(x̄) dx̄

=
1

A3∥hk
ℓ ∥32θℓ,kZℓ,k

∫ bℓ,k

aℓ,k

(x̄− sℓ,k)
2 · e

−
(x̄−sℓ,k)2

2A2θ2
ℓ,k

∥hk
ℓ
∥22 dx̄

= θℓ,k
(bℓ,k − sℓ,k)e

−
(bℓ,k−sℓ,k)2

2A2θ2
ℓ,k

∥hk
ℓ
∥22

√
2πA∥hk

ℓ ∥2Zℓ,k

− θℓ,k
(aℓ,k − sℓ,k)e

−
(aℓ,k−sℓ,k)2

2A2θ2
ℓ,k

∥hk
ℓ
∥22

√
2πA∥hk

ℓ ∥2Zℓ,k

+ θ2ℓ,k (A.1)

= θ2ℓ,k

(
aℓ,k(θℓ,k)ϕ(aℓ,k(θℓ,k))

Zℓ,k

− bℓ,k(θℓ,k)ϕ(bℓ,k(θℓ,k))

Zℓ,k

)
+ θ2ℓ,k (A.2)

= θ2ℓ,k

(
ηℓ,k(θℓ,k) + 1

)
(A.3)
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