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1 Introductory Formulae

This section will cover the basic notations, formulae and ’characters’ of the course.

1.1 Notation

We will only consider finite alphabets of symbols.

• X denotes a finite set of symbols

• x ∈ X is an element of X

• X denotes a chance variable (is not a RV, as it does not necessarily take values in R, and thus
do not have an expected value)

1.2 Entropy and Friends

Definition 1.1 (Entropy). The entropy of a chance variable X is commonly referred to as the
uncertainty of X.(It’s not a function of X)

H(X) =
∑
x∈X

PX(x) log(
1

PX(x)
) (1.1)

Also it is expressible as a function of X’s probability mass function PX as H(PX).

H(X) = H(PX) = E[log(
1

PX
)] (1.2)

2



Example 1. The setup
X = {H,T}, PX(X) = p, PX(T ) = (1− p) (1.3)

Yields the following entropy

H(X) = p log(
1

p
) + (1− p) log(

1

1− p
) (1.4)

Remark 1. Since the PMF of a chance variable can be viewed as a vector, a permutation of the
values does not affect the entropy

Definition 1.2 (Self Information). The self-information of a chance variable X is defined as

IX(a) = log(
1

PX(a)
) (1.5)

Thus
H(X) = E[IX(x)] (1.6)

Proposition 1.3 (Entropy Bounds). A few properties of entropy:

1. H(X) ≥ 0 w.eq. iff X is deterministic

2. H(X) ≤ log(|X |) w.eq. iff X is uniformly distributed

Proof. 1. PX(x) log(PX(x)) ≥ 0 and is zero if either PX(x) = 0 or log(PX(x)) = 1 thus PX(x) =
1 → log(PX(x)) = 0

2. Let PX(x) and Puni(x) =
1

|X | .

D(PX(x)||Puni(x)) =
∑
x∈X

P (x) log(
PX(x)

Puni(x)
) =

∑
x∈X

P (x) log(
PX(x)

1
|X |

) =
∑
x∈X

P (x) log(|X |PX(x))

So, by splitting the log we have

D(PX(x)||Puni(x)) =
∑
x∈X

P (x) log(|X |)+
∑
x∈X

P (x) log(PX(x)) = log(|X )−
∑
x∈X

P (x) log(
1

PX(x)
)

We will prove later that D(PX(x)||Puni(x)) ≥ 0 ⇒ H(X) ≤ log(|X |)

Definition 1.4 (Relative Entropy). Relative entropy of two PMFs P and Q is defined as

D(P ||Q) =
∑
x∈X

P (x) log(
P (x)

Q(x)
) = EP [log(

P

Q
)] (1.7)

or is infinity if there exists y ∈ X s.t. Q(x) = 0 and P (x) > 0.

Remark 2. It’s obvious that D(P ||Q) ̸= D(Q||P ). So it’s not symmetric, thus it can not be used
as a metric.

Definition 1.5 (Concavity). A function f is said concave if it satisfies ∀λ ∈ [0, 1]

f(λx0 + (1− λ)x1) ≥ λf(x0) + (1− λ)f(x1) (1.8)
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Proposition 1.6 (Jensen’s Inequality). Let X be. a RV s.t. P [X = x0] = λ and P [X = x1] = 1−λ,
then

f(E[X]) ≥ E[f(X)] (1.9)

for any concave function f

Proof. Using a second-order Taylor expansion, we get

f(x) = f(x0) + (x− x0)f
′(x0) +

1

2
(x− x0)

2f ′′(η), η ∈ [x, x0] (1.10)

Since f is concave, f ′′(x) ≤ 0, thus

E[f(x)] ≤ E[f(x0)] + E[(x− x0)f
′(x0)] (1.11)

By setting E[X] = x0, we get E[x− x0] = 0 thus

E[f(x)] ≤ f(x0) = f(E[x]) (1.12)

Theorem 1.7.
D(P ||Q) ≥ 0 (1.13)

with equality iff P = Q

Proof.

−D(P ||Q) =
∑
x

P (x) log(
P (x)

Q(x)
) = EP [log(

P (x)

Q(x)
)] (1.14)

by applying Jensen’s inequality due to the logarithm’s concavity,

−D(P ||Q) ≤ log(EP [
P (x)

Q(x)
]) = log(

∑
x

P (x)
Q(x)

P (x)
) = log(

∑
x

Q(x)) = 0 (1.15)

Proposition 1.8 (Log-Sum Inequality). Let ai ≥ 0, bi ≥ 0 , then∑
i

ai log(
ai
bi
) ≥ (

∑
i

ai) log(

∑
i ai∑
i bi

) (1.16)

Proof. Let a =
∑

i ai and b =
∑

i bi, then
ai

a and bi
b are PMFs. Hence

D(
ai
a
||bi
b
) =

∑
i

ai
a
log(

ai

a
bi
b

) ≥ 0

implying ∑
i

ai
a
log(

ai
bi
) ≥ a log(

a

b
)
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Definition 1.9 (Joint Entropy). Of two chance variables X ∈ X and Y ∈ Y is the entropy of the
chance variable Z = (X,Y ) ∈ (X × Y)

H(X,Y ) = H(PXY ) =
∑
x

∑
y

PXY (x, y) log(
1

PXY
) (1.17)

Definition 1.10 (Conditional Entropy). Of chance variables X and Y is given by:

H(X|Y = y) =
∑
x

PX|Y=y(x) log(
1

PX|Y=y(x)
) (1.18)

if Y is known, otherwise

H(X|Y ) =
∑
y

PY (y)H(X|Y = y) = EY [H(X|Y = y)] (1.19)

Remark 3. Quick reminder that the conditional PX|Y=y(x) can be calculated based on the relation

PX|Y=y0
(x) =

PXY (x, y0)

PY (y0)

Theorem 1.11 (Chain Rule).

H(X,Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X) (1.20)

i.e. the uncertainty of X and Y is the uncertainty of Y plus the uncertainty of X once Y has been
observed and vice-versa.

Remark 4. The foregoing relation can easily be generalized for Xn = (X1, X2, ..Xn) variables.

H(Xn) = H(X1) +H(X2|X1) +H(X3|X2, X1) + ...+H(Xn|Xn−1, Xn−2...X1)

=

n∑
i=1

H(Xi|Xi−1...X1) =notation

n∑
i=1

H(Xi|Xi−1)

Proof.

E[log(
1

PXY (x, y)
)] = E[log(

1

PY PX|Y
)] = E[log(

1

PY
)] + E[log(

1

PX|Y
)]

Remark 5 (Independent RVs’ Entropy). When X and Y are independent, then

H(X,Y ) = H(X) +H(Y ) (1.21)

Definition 1.12 (Mutual Information). Informally, mutual information I(X;Y ) of two chance
variables denotes the amount of information one gives about the other.

1. H(X)−H(X|Y ) (this implies that I(X;Y ) ≤ log(|X |))

2. H(Y )−H(Y |X)

3. H(X) +H(Y )−H(X,Y ) (this implies symmetry, i.e. I(X;Y ) = I(Y ;X))
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4. D(PXY ||PXPY ) (thus I(X;Y ) = 0 iff X ⊥⊥ Y )

Proof. 1. by definition

2.

I(X;Y ) = H(X)−H(X|Y ) = H(X)− [H(X,Y )−H(Y )] = H(X) +H(Y )−H(X,Y )

3.

D(PXY ||PXPY ) =
∑
X,Y

PXY log(
PX,Y (x, y)

PX(x)PY (y)
)

=
∑
X,Y

PXY log(PX,Y (x, y)) +
∑
X,Y

PXY log(
1

PX(x)
) +

∑
X,Y

PXY log(
1

PY (y)
)

=
∑
X,Y

PXY log(PX,Y (x, y)) +
∑
X

PX log(
1

PX(x)
) +

∑
Y

PY log(
1

PY (y)
)

= −E[log(
1

PXY
)] + E[log(

1

PX
)] + E[log(

1

PY
)]

A very important result from mutual information, is that conditioning reduces entropy, i.e.

H(X) ≥ H(X|Y ) (1.22)

with equality iff X ⊥⊥ Y . Knowing Y can only remove uncertainty about X, not add any.

Remark 6. This does NOT apply to H(X|Y = y). It could very well be greater than H(X). All of
Y must be observed to affirm that conditioning reduces entropy.

To better illustrate it, consider a distribution P [X = 0] = 1
2 , P [X = 1] = 1

2 conditional on
Y = y, but the average conditional distribution is P [X = 0] = 1

4 , P [X = 1] = 3
4 . The distribution of

X|Y = y has greater entropy than X|Y .

Definition 1.13 (Mixture of PMFs). Let P,Q be PMFs and λ ∈ [0, 1]. Then W = λP + (1− λ)Q
is a convex combination aka mixture of P and Q. It is a well-defined PMF as well.

Proposition 1.14.

H(W ) = H(λP + (1− λ)Q) ≥ λH(P ) + (1− λ)H(Q) (1.23)

Proof. Let

E =

{
1 w.p.λ

0 w.p.1− λ

and P (X|E = 1) = P , P (X|E = 0) = Q. Then

PX(x) = P (E = 0)Q(x) + P (E = 1)P (x) = W (x)

and
H(X) = H(W ) ≥ H(X|E)

by the conditioning of entropy.

6



Definition 1.15 (Conditional Mutual Information). If Z is known and has value Z = ζ then

I(X;Y |Z = ζ) = H(Y |Z = ζ)−H(Y |X,Z = ζ) (1.24)

Otherwise

I(X;Y |Z) =
∑
z

PZ(z)I(X;Y |Z = z)

=
∑
z

PZ(z)(H(X|Z = z)−H(X|Y,Z = z))

= H(X|Z)−H(X|Y, Z)

(1.25)

I(X;Y |Z) ≥ 0, with equality iff X ⊥⊥ Y conditionally on Z, i.e. iff X,Y, Z form a Markov
Chain.

Definition 1.16 (Chain Rule for Conditional Mutual Information).

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) (1.26)

Proof. We consider X,Y as one random variable and write:

I(X,Y ;Z) = H(X,Y )−H(X,Y |Z) (1.27)

and apply the chain rule

= H(X)−H(X|Z) +H(Y |X) +H(Y |X,Z) = I(X;Z) + I(Y ;Z|X) (1.28)

Remark 7. All in all you have to remember the next 3 equalities.

• I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

• I(X1, X2, ...Xn;Y ) =
∑

i I(Xi;Y |X1, ..., Xi−1)

• I(X;Y,Z) = I(X;Y ) + I(X;Z|Y )

Proposition 1.17 (Fano’s Inequality). Let Û , Û be L-ary random variables taking value in the same
alphabet, and let the error probability P [U ̸= Û ] = Pe. Then

Hb(Pe) + Pe log(L− 1) ≥ H(U |Û) (1.29)

where Hb is the binary entropy function.

Proof:
Let Z be a random variable such that

Z =

{
1, if U ̸= Û

0, if U = Û

Thus,
H(U,Z|Û) = H(U |Û) +H(Z|U, Û) = H(U |Û) = H(Z|Û) +H(U |Û , Z)

≤ H(Z) + PZ(1)H(U |Û , Z = 1) + PZ(0)H(U |Û , Z = 0)

≤ Hb(Pe) + Pe log(L− 1)

by using the upper bound on entropy and the fact that the alphabet is reduced to size L− 1 since
we presume Û is known.
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2 Source Coding / Data Compression

This section will cover efficient coding of a single random variable. source coding refers to the
mapping of symbols (from an information source X ) to a set of alphabet symbols D.

2.1 Basic Definitions

Definition 2.1. A source code C for a random variable X is a mapping from X to D∗.

Definition 2.2. The expected length of a source code C(x) for a random variable X of PMF PX

is defined by

L =
∑
i

pX(xi)l(xi) (2.1)

where l(·) denotes the length of a codeword.

Definition 2.3. A singular code is a code that has the same codeword for two different sources.

Definition 2.4. The extension of a code C(x) is a mapping from finite-length strings in X to
finite-length strings in D∗.

C∗(x1x2...xn) = C(x1)C(x2)...C(xn) (2.2)

Definition 2.5. A uniquely decodable code C is a code which it’s extension C∗ non-singular i.e

C∗(x1, x2, ..xn) = C(x1)C(x2)...C(xn)

Definition 2.6. A prefix-free code is a code whose codewords are only leaves of the D-ary tree
representing it. It is not singular, not ambiguous and also gives the shortest coding. More formally,
C is a prefix free code if no codeword is a prefix of other codeword.

Proposition 2.7. Every prefix free code is uniquely decodable. Whereas the reverse doesn’t hold

Lemma 2.8 (Leaf Counting and Depth). The number of leaves (n) and their depths {li}ni=1 in a
D-ary tree satisfies

n = N(D − 1) + 1 (2.3)

where N is the number of nodes (root included), and

n∑
i=1

D−l1 = 1 (2.4)

Proof:
Induction. Pretty straightforward.

Proposition 2.9 (Kraft’s Inequality). There exists a D-ary prefix-free code wth r codewords of
lengths l1, ..., lr if and only if

r∑
i=1

D−li ≤ 1 (2.5)

If the equality holds, then there are no unused leaves remaining in the tree.
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This proposition offers a practical property on any prefix-free code. Consider a D-ary tree of
any D-ary prefix-free code for an r-ary random message U . Let w1, w2, ..., wn be the leafs to this
tree, ordered such that wi is the leaf corresponding to the codeword message ui, i = 1, 2.., r and let
wr+1, wr+2...., wn are unused. Define two PMF’s such that

Pw(wi) =

{
Pu(ui) = pi i = 1, 2, 3..., r

0 i = r + 1, ..., n

Pw̃(wi) = D−li , i = 1, 2, ..., n

Proposition 2.10. The expected length of a prefix free code of messages {u} is always upper bounded
as follows:

H(u)

log(D)
≤ E[L] (2.6)

Proof. We can compute

D(Pw||Pw̃) =

r∑
i=1

Pw(wi) log(
Pw(wi)

Pw̃(wi)
)

=
∑
i

Pw(wi) log(Pw(wi))−
∑
i

Pw(wi) log(Pw̃(wi))

=
∑
i

pi log(pi) +
∑
i

pili log(Di)

= −H(u) + log(D)E[L] ≥ 0

= E[L] ≥ H(u)

log(D)

2.2 Kraft’s Inequality and Minimum Coding Length

P.S: we only talk about binary codes but the same hold for D-ary codes.

Proposition 2.11 (Kraft’s Inequality).

1) The lengths l1, l2, ..., ln of every uniquely decodable binary code are integers satisfying the following:

r∑
i=1

2−li ≤ 1 (2.7)

2) Given l1, l2, ..., ln integers that satisfy

r∑
i=1

2−li ≤ 1 (2.8)

then there is a prefix free code of these lengths.

9



Remark 8. This inequality states that everything that a uniquely decodable code can achieve always
there is an equivalent prefix free code which can do the same.

Proof. We will prove the claim in two parts:

• If
∑

2li ≤ 1, then there is a prefix free code with the same li lengths.
Assume w.l.o.g that l1 ≤ l2 ≤ l3... ≤ lm. By construction we can create a tree till l1, l2..., lk.
We are sure that we can find leaves for lk+1, lk+2..., lm
In depth lk the tree has 2lk leaves. In depth lk due to the child at length l1 there are 2lk−l1

leaves which can’t be used. In similar fashion due to the child at depth l2 there are 2lk−l2

leaves which can be used. At level lk−1 there are 2lk−lk−1 children which can be used. Ruled
out all the phantom leaves:

k−1∑
i=1

2lk−li < 2lk ⇒
k−1∑
i=1

2−li < 1,So if
∑

2li ≤ 1the tree can expand

• Let the code C : X → {0, 1}τ , and l(X) is the length of the C(X) for each symbol x.(∑
x∈X

2−l(x)

)m

=

(∑
x∈X

2−l(x)

)(∑
x∈X

2−l(x)

)
...

(∑
x∈X

2−l(x)

)

=

(∑
x1∈X

(∑
x2∈X

...

( ∑
xm∈X

2−l(x1)2−l(x2)2−l(xm)

)))

=
∑

x∈Xm

2−
∑

l(xi) =

mlmax∑
k=1

a(k)2−k ≤
mlmax∑
k=1

2k2−k = mlmax

⇒
∑
x∈X

2−l(x) ≤ (mlmax)
1
m , also lim

m→∞
(mlmax)

1
m → 1

Hence,
∑
x∈X

2−l(x) ≤ 1

Definition 2.12. An optimal code is a code C that has minimal expected length.

Proposition 2.13. Let l1, l2, l3, ..., ln be the lengths of the symbols x1, x2, ..., xn. It can be shown
that

H(X) ≤ L∗ ≤ H(X) + 1 (2.9)

where
argmin
u.d codes

∑
i=1,..n

pili = argmin
l1,l2,l3...∈N∑

2−li≤1

∑
pili = L∗

Proof. Relax the problem to the following

argmin
l1,l2,l3...∈R∑

2−li≤1

∑
pili = L∗

R
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Using Lagrange multipliers we can prove that the L∗
R is achieved for l∗i = log( 1

pi
) So, L∗

R = H(X) ≤
L∗, the equality holds if log( 1

pi
) are integers.

To upper bound it we can take ⌈log( 1
pi
)⌉. Hence we got

∑
pili =

∑
pi⌈log(

1

p1
)⌉ <

∑
pi(log(

1

p1
) + 1) = H(P ) + 1

Proposition 2.14. The plus 1 in the foregoing equation sometimes is not convenient. We can avoid
this term using k-to-variable codes.
C : X → {0, 1}t one-to-variable code.
C : Xk → {0, 1}t k-to-variable code.

H(X1, X2, ..Xk) ≤ L∗ ≤ H(X1, X2, ..Xk) + 1
i.i.d⇒ kH(X) ≤ L∗ ≤ kH(X) + 1

⇒ H(X) ≤ L∗

k
≤ H(X) +

1

k

Example:
We have symbols X1, X2... with true probability mass function equal to {Pi} but we design our code
with wrong probability mass function equal to {Qi} and thus we choose li = ⌈log( 1

qi
)⌉. So the error

that we will pay is D(P ||Q)

E[L] =
∑

pilog(
1

qi
) =

∑
pilog(

pi
qipi

) =
∑

pi

(
log(

pi
qi
) + log(

1

pi
)

)
= D(P ||Q) +H(P )

2.3 Huffman Procedure

The Huffman procedure is a way of constructing optimal codes (Huffman Codes).

2.3.1 Construction of Huffman Codes

Without loss of generality, we will assume that our codewords are ordered such that

p1 ≥ p2 ≥ ... ≥ pn

For binary codes, we start with the two lowest-probable codewords, and ’join’ them by adding
probabilities. We now consider their joined node as a codeword and repeat the procedure by finding
the next lowest-probable codeword, joining etc...

Example:

Let X = {(1|0.25), (2|0.25), (3|0.2), (4|0.15), (5|0.15)} be an ensemble, we will construct the Huff-
man code corresponding to this source:
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5

0.15

4

0.15

0.3

3

0.2

2

0.25

0.45

1

0.25

0.55

For ternary codes, we can add ’extra’ nodes with probability zero to fit the model adequately.

2.4 Typicality

This section will discuss the three types of typicality, from most intuitive and mathematically com-
plex to least intuitive but mathematically simple.

2.4.1 Empirical Type

Let

N(a|X) =

n∑
i=1

I{xi = a} (2.10)

count the number of outcomes of X matching a.
From N(a|X), we can construct an empirical type, which corresponds to a PMF:

PX(a) =
1

n
N(a|X) (2.11)

We can thus say that X is of type P if and only if 1
nN(aX) = P (a)

2.4.2 Strong and Weak Typicality

Strong typicality is a relaxation of the constraint on empirical typicality.
Example:

Let A be a sequence of a fair coin, of outcomes ∈ {H,T}, which P = ( 12 ,
1
2 ).

Then all sequences of empirical type P are all sequences in which H and T occur the same
number of times, which is rather limited.

Definition 2.15 (Strongly Typical Set).

T (n)
ϵ (P ) = {x ∈ X | 1

n
N(a|X)− P (a) ≤ ϵP (a)} (2.12)

This allows for sequences where H occurs almost 50% of the time.

Definition 2.16 (Weakly Typical Set).

A(n)
ϵ (P ) = {ξ ∈ Xn|2−n(H(P )+ϵ) ≤ Πn

i=1P (ξi) ≤ 2−n(H(P )−ϵ)} (2.13)

The elements of A(n)
ϵ (P ) are said to be weakly typical w.r.t. P .

12



Remark 9. Notice that
T (n)
ϵ (P ) ⊆ A(n)

ϵ (P ) (2.14)

Also note that if X1, X2, ..., Xn ∼i.i.d. P , then the sequence (x1, x2, ..., xn) can be in A(n)
ϵ (P ).

2.5 Asymptotic Equipartition Property (AEP)

This is the tool we will mostly use. Recall the weak law of large numbers, which states that for
X1, ..., Xn ∼i.i.d. P then the empirical average converges toward the expectation, i.e.

1

n

n∑
i=1

Xi −→ E[X1] as n → ∞ (2.15)

The AEP is very analogous, but with the entropy H(P ) instead of the expected value.

Theorem 2.17 (Asymptotic Equipartition Property). Let X1, X2, ...Xn ∼i.i.d. P . Then

1

n
log(

1

p(x1, x2, ...xn)
) = H(P ), n → ∞ (2.16)

in other words,
p(x1, x2, ...xn) = 2−n(H(P )±ϵ), n → ∞ (2.17)

Proof. By considering the random variable Yi = − log(p(Xi = xi)), and the fact that Xi are i.i.d.,
then we can write out

1

n
log(

1

p(x1, x2, ...xn)
) = − 1

n

n∑
i=1

P (xi) = − 1

n

n∑
i=1

Yi (2.18)

which by weak law of large numbers yields

− 1

n

n∑
i=1

Yi → −E[Yi] = E][− log(P (xi))] = H(P ) (2.19)

Lemma 2.18 (Convergence of AEP). If X1, X2, ..., Xn ∼ P are i.i.d., then

P [x ∈ A(n)
ϵ (P )] →n→∞ 1 (2.20)

i.e. all sequences of i.i.d chance variables will all find themselves in this weakly typical set for n
large enough.

Proof.
P [2−n(H(P )+ϵ) ≤ Πn

i=1P (xi) ≤ 2−n(H(P )−ϵ)]

= P [−(H(P ) + ϵ) ≤ 1

n

n∑
i=1

log(Pi) ≤ −(H(P )− ϵ)]

= P [H(P ) + ϵ ≥ 1

n

n∑
i=1

log(
1

Pi
) ≥ H(P )− ϵ]

= P [−ϵ ≤ 1

n

n∑
i=1

log(
1

Pi
)−H(P ) ≤ ϵ] → 1

13



Lemma 2.19 (Bounds on size of weakly typical set). We have two bounds for the cardinality of

A(n)
ϵ (P ):

• |A(n)
ϵ (P )|≤ 2n(H(P )+ϵ)

• 2n(H(P )−ϵ) ≤ |A(n)
ϵ (P )|

Proof. The upper bound:

1 ≥ P×n(A(n)
ϵ (P )) =

∑
ξ∈A(n)

ϵ (P )

P×n(ξ) ≥
∑

A(n)
ϵ (P )

2−n(H(P )+ϵ) = |A(n)
ϵ (P )|2−n(H(P )+ϵ)

which implies
2n(H(P )+ϵ) ≥ |A(n)

ϵ (P )|

The lower bound:

1− ϵ ≤ P×n(A(n)
ϵ (P )) =

∑
ξ∈A(n)

ϵ (P )

P×n(ξ) ≤
∑

ξ∈A(n)
ϵ (P )

2−n(H(P )−ϵ) = |A(n)
ϵ (P )|2−n(H(P )−ϵ)

2.5.1 Consequences of AEP

A(n)
ϵ (P ) is rather small within the set of sequences of i.i.d. {Xi}ni=1, but contains most of the

probability. Moreover, since there are less than 2n(H(P )+ϵ) in A(n)
ϵ , indexing them requires no

more than ⌈n(H(P ) + ϵ) + 1⌉ bits. This is the real data compression implication! Each code

in A(n)
ϵ have a short description of bits, which is ’optimal’. Other codes not in A(n)

ϵ are ’brute force’

indexed, with a flag bit prepended to them to signal they are not in A(n)
ϵ . Add a photo or something

to show diagrammatically this important implication!
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3 Channels and Capacity

This section will cover the concepts of data transmission through a (potentially noisy / lossy)
environment.

Remark 10. We will only consider discrete-time channels, as well as finite alphabets! More-
over, no cost-constraints are taken into account.

Definition 3.1 (Channel). A channel is the medium that will transmit information from source to
target. In our context, it is the part of the communication system that we cannot change / tamper
with. It is out of our control.

Definition 3.2 (Discrete Memoryless Channel). A DMC is a channel specified by:

• an input alphabet X

• an output alphabet Y

• a conditional probability distribution PYn|Xn
(yn|xn, xn−1, ..., x1) = PYn|Xn

(yn|xn)

such that the conditional distribution yields a channel law matrix WY |X

Remark 11. For a DMC, the channel transition function can be expressed as such:1

W (yn|xn) = Πn
i=1W (yi|xi)

where the superscript denotes a sequence of n chance variables.

Definition 3.3 (Channel Law Matrix). The channel law matrix WY |X satisfies the following:

• W (y|x) ≥ 0,∀y, x

•
∑

y∈Y W (y|x) = 1

It is built by considering the X’s in the rows, and the Y ’s in the columns. Thus, all rows sum to 1.

Thus for any source distribution Q(·), we have:

• Q ∈ P(X )

• (Q ◦W )(x, y) = Q(x)W (y|x), it’s the joint distribution of X,Y

•
∑

x Q(x)W (y|x) = 1, it’s the pmf of Y

3.1 Channel Coding

To counter the naive intuition of sending bits via repetition codes, Shannon came up with the idea
of sending blocks of codes.

1the factorization is due to the memoryless property
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3.1.1 Definitions

Definition 3.4. A (M,n) code for a channel WY |X consists of

1. a message set M

2. an encoder fn : {1, 2, ...,M} → Xn which yields codewords of length n

3. a decoder ϕn : Yn → {1, 2...,M}

Definition 3.5. A codebook is the image of an encoder over all possible messages, denoted

xn(1), xn(2), ..., xn(M) (3.1)

We typically think of a codebook as a |M|×n matrix, where the mth row is xn(m).

Definition 3.6. The rate of a channel is defined by

R =
k

n
[

bits

channel uses
] (3.2)

Remark 12. Notice that if we are considering a message space of |M| messages, then

R =
log2(|M|)

n
(3.3)

The key idea here is to have a fixed rate, and then fit as much as we can given that constraint.

Definition 3.7 (Probability of error). Let λm denote the error of transmission of information, i.e.

• λm =
∑

y:ϕ(y)̸=m Πn
i=1W (yi|xi(m)) =

∑
y:ϕ(y) ̸=m W (Y n|Xn)

• λmax = max
m

{λm}

i.e. λm is the sum of probabilities that W will map X(m) to another Y .

Definition 3.8 (Arithmetic Average Probability of Error). is denoted with P
(n)
e , and is defined by:

P (n)
e =

1

|M |

n∑
i=1

λi (3.4)

Definition 3.9. A rate R is said achievable on a discrete memoryless channel if ∃ a sequence of

codes (fn, ϕn) indexed by the blocklength of rate R = log(M)
n = ⌈2nR⌉

n such that λmax → 0. I.e. the
maximal probability of error tends to zero as n → ∞.

Definition 3.10. The capacity of a discrete memoryless channel W is the supremum of achievable
rates, denoted C.

Theorem 3.11. The information capacity of a channel W , when fed an input sequence of dis-
tribution Q is given by:

C(I) = max
Q

{I(Q,W )} (3.5)

which can also be written as

C = max
Q

{I(X;Y ) = H(X)−H(X|Y )} (3.6)

for input X and output Y .
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Example: [Binary Symmetric Channel]
Assuming the crossover probability is ϵ,

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x

Q(x)H(Y |X = x) (3.7)

= H(Y )−
∑
x

Q(x)Hb(ϵ) = H(Y )−Hb(ϵ) ≤ 1−Hb(ϵ)

The mutual information is maximized when X ∼ Ber( 12 ).

Definition 3.12 (Weakly Symmetric Channel). A weakly symmetric channel is a channel whose
matrix’ rows are permutations of each other, and all columns sum to the same value. For a weakly
symmetric channel, the capacity is given by:

CWSC = log(|Y|)−H(row) (3.8)

Proof. We start with any Q.

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x

Q(x)H(Y |X = x) = H(Y )−
∑
x

Q(x)H(rowX = x)

=⇒ H(Y )−H(row) ≤i log(|Y|)−H(row)

To hold i) with equality we have to choose Y to be uniform. If we choose X uniform we get

P (Y = y) =
∑
x

Q(x)W (Y = y|X = x) =
∑
x

1

|X |
W (Y = y|X = x) =

1

|X |
sum(of column y) =

t

|X |

Another argument would be that due to symmetry it is clearly that Q∗(0) = Q∗(1) = 1
2 achieves

capacity. To prove this assume that for any a Q1 = (a, 1 − a) achieves capacity. Then, due to
symmetry Q2 = (1 − a, a) achieves also capacity. Thus C = I(Q1,W ) = I(Q2,W ). Mutual
information is concave and thus we get that

I(1
2
Q1 +

1

2
Q2;W ) ≥ 1

2
I(Q1;W ) +

1

2
I(Q2;W ) =

1

2
C +

1

2
C = C.

But 1
2Q1 +

1
2Q2 = ( 12 ,

1
2 )

3.2 Basic Channel Capacity Examples

Here we will derive useful formulas for the capacity of a few simple channels.

3.2.1 Binary Symmetric Channel

Consider a binary symmetric channel, represented by The following diagram.

0 1

0 1

1− ϵ

1− ϵ

ϵ

ϵ
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Its channel matrix law is thus: [
1− ϵ ϵ
ϵ 1− ϵ

]
(3.9)

To calculate the capacity, we will maximize the mutual information I(X;Y ):

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x∈X

Q(x)H(Y |X = x)

= H(Y )−
∑
x∈X

Q(x)Hb(ϵ) = H(Y )−Hb(ϵ) ≤ log2|Y|−Hb(ϵ) = 1−Hb(ϵ)
(3.10)

which is maximized for Q = ( 12 ,
1
2 ).

3.2.2 Binary Erasure Channel

The binary erasure channel is a bit different, as it models the ’loss’ of a bit during transmission,
rather than a corruption. It looks like this:

0

?

1

0 1

1− ϵ

1− ϵ

ϵ

ϵ

A fraction ϵ of the bits are erased. The capacity is computed as follows:

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−Hb(ϵ) (3.11)

H(Y ) is however not that simple to compute. ConsiderP (X = 1) = π, then Y is distributed along
the vector QW = [(1− π)(1− ϵ), ϵ, π(1− ϵ)]. Thus

H(Y ) = H(QW )

= −(1− π)(1− ϵ) log((1− π)(1− ϵ))− ϵ log(ϵ)− π(1− ϵ) log(π(1− ϵ))

= −(1− π)(1− ϵ)(log(1− π) + log(1− ϵ))− ϵ log(ϵ)− π(1− ϵ)(log(π) + log(1− ϵ))

= −(1− ϵ)(π log(π) + (1− π) log(1− π))− (ϵ log(ϵ) + (1− ϵ) log(1− ϵ))

= (1− ϵ)Hb(π) +Hb(ϵ)

(3.12)

Thus, plugging it into the mutual information,

I(X;Y ) = H(Y )−Hb(ϵ) = (1− ϵ)H(π) (3.13)

which is maximized at C = 1− ϵ by π = 1
2 .

3.3 Symmetric Channels

Definition 3.13. A symmetric channel is a channel whose matrix law satsfies the following
conditions:
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1. the rows of the probability transition matrix are permutations of each other

2. the columns of the probability transition matrix are permutations of each other

Example 2.

W =

0.3 0.2 0.5
0.5 0.3 0.2
0.2 0.5 0.3

 (3.14)

describes a symmetric channel.

Proposition 3.14 (Capacity Bound for Symmetric Channels). Letting r denote a row of the prob-
ability transition matrix, we know that

I(X;Y ) = H(Y )−H(Y |X) ≤ log|Y|−H(r) (3.15)

with equality if X is uniformly distributed, since uniform distribution on X yields uniform distribu-
tion on Y.

p(y) =
∑
x∈X

W (y|x)Q(x) =
1

|X |
∑
x∈X

W (y|x) = 1

|Y|
(3.16)

Thus a uniform distribution on the input maximizes the capacity of a symmetric channel.

3.3.1 Weakly Symmetric Channels

Definition 3.15. A weakly symmetric channel is a relaxation of the symmetric channel, and must
have a matrix law satisfying:

1. the rows of the probability transition matrix are permutations of each other

2. all columns sum to the same amount

Example 3.

W =

[
1
3

1
6

1
2

1
3

1
2

1
3

]
(3.17)

describes a weakly symmetric channel.

In other words, a weakly symmetric channel is a convex combination of (strongly) symmetric
channels (see Fig 1)!

Theorem 3.16 (Capacity of Weakly Symmetric Channels). Let r be a row of a weakly symmetric
channel’s matrix law, then its capacity is given by

C = log|Y|−H(r) (3.18)

and it is achieved by a uniform distribution on the input alphabet.

3.4 Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker conditions establish a method to maximize a concave function over a
probability vector.
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Figure 1: The BEQ as a convex combination of BSCs

Figure 2: A typical concave function

3.4.1 General Conditions

Let f be a concave function over R, a convex region of Rn. We wish to find q ∈ R such that f(q)
is maximal.

Using calculus arguments, we know that q∗ ∈ Rn maximizes f over Rn if:

∂f(q∗)

∂q∗l
= 0, ∀l ∈ {1, 2, .., n} (3.19)

However, q∗ is not guaranteed to lie in R. To find the maximum q∗ ∈ R, we will use the following
lemma:

Lemma 3.17. If there exists a q∗ ∈ R such that

∂f(q∗)

∂q∗l
= 0 ∀l

then q∗ maximizes f .

Proof. By contradiction.. TODO
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3.4.2 For Probability Vectors

The fact that q must be a probability vector can be translated to the following condition:

L∑
l=1

ql = 1 ⇐⇒
L∑

l=1

ql − 1 = 0 =⇒ λ(

L∑
l=1

ql − 1) = 0 ∀λ

Thus, any q that maximizes f also maximizes

F (q) = f(q)− λ(

L∑
l=1

ql − 1) (3.20)

where λ is called the Lagrange multiplier.

Theorem 3.18 (KKT Condition Theorem).

∂f(q)

∂ql
= λ ∀l : ql ≥ 0

∂f(q)

∂ql
≤ λ ∀l : ql = 0

(3.21)

are necessary and sufficient conditions on q to maximize f on R. λ is chosen so that the
condition on q is satisfied.

Proof. Suppose we have β such that f(β) ≤ f(α) where α is the maximiser of f(·). From concavity,
we know that

f(β)− f(α) ≤ f(θβ + θ̄α)− f(α)

θ
→

L∑
l=1

∂f(α)

∂αl
(βl − αl) ≤

L∑
l=1

λ(βl − αl) = 0 (3.22)

as θ → 0 since
∑

l=1 βl = 1 =
∑

l=1 αl. Thus, for any β, f(β) ≤ f(α).
For necessity, again suppose that α maximises f(·). W.l.o.g. suppose that α1 > 0. We can define

β as
β = α+ ϵek − ϵe1 (3.23)

for some fixed k ∈ {1, 2, ..., L}. We choose

λ :=
∂f(α)

∂α1
(3.24)

and by the above part of the proof, we know that

f(θβ + θ̄α)− f(α)

θ
≤ 0 =⇒

L∑
l=1

∂f(α)

∂αl
(βl − αl) ≤ 0

= ϵ
∂f(α

∂αk
− ϵ

∂f(α)

∂α1
= ϵ

∂f(α

∂αk
− ϵλ ≤ 0

(3.25)

yielding our first condition. Now if αk > 0, there is an ϵ which can be negative and still satisfy our
conditions, so

−αk < ϵ < 0 (3.26)
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plugged into our above inequality will yield

∂f(α)

∂αk
≥ λ (3.27)

Both conditions are only satisfied at the same time if

∂f(α)

∂αk
= λ (3.28)

3.4.3 KKT for Channel Capacity

A useful reminder would be that for Q ∈ P(X ) and W (y|x) a channel,

• Q 7→ I(Q,W ) is concave

• W 7→ I(Q,W ) is convex

Also, we will denote max{I(Q,W )} by C(I). By convention in Probability Theory, we will
consider Q to be a row vector. This will help later on. For Q and W as given above, if Q and λ ∈ R
are such that

D(W (·, x)||(QW )(·)) ≤ λ, ∀x ∈ X (3.29)

D(W (·, x)||(QW )(·)) = λ, ∀x : Q(x) > 0 (3.30)

then Q achieves capacity C(I) = λ.

Conversely, if Q∗ achieves max{I(Q,W )}, then

D(W (·, x)||(Q∗W )(·)) ≤ λ, ∀x ∈ X (3.31)

D(W (·, x)||(Q∗W )(·)) = λ, ∀x : Q∗(x) > 0 (3.32)

Proof. We know that Q 7→ I(Q,W ) is concave, so we apply Theorem 3.18, with q corresponding to
Q and ql corresponding to Qk = Q(xk). To compute the partial derivatives, we express the mutual
information between the input and the output DMC as

I(Q,W ) =
∑
x

∑
y

Q(x)W (y|x) ln
(

Q(x)W (y|x)
Q(x)(QW )(y)

)
=
∑
x

∑
y

Q(x)W (y|x) ln
(

W (y|x)∑
x′ Q(x′)W (y|x′)

)
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By the product rule and by the chain rule, we have

∂I(Q,W )

∂Qk
=
∑
x

∑
y

I{x = xk}W (y|x) ln
(

W (y|x)∑
x′ Q(x′)W (y|x′)

)
+
∑
x

∑
y

Q(x)W (y|x)
∑

x′ Q(x′)W (y|x′)

W (y|x)
−W (y|x)W (y|xk)

(
∑

x′ Q(x′)W (y|x′))2

=
∑
y

W (y|xk) ln

(
W (y|x)∑

x′ Q(x′)W (y|x′)

)
−
∑
y

W (y|xk∑
x′ Q(x′)W (y|x′)

∑
x

Q(x)W (y|x)

=
∑
y

W (y|xk) ln

(
W (y|x)∑

x′ Q(x′)W (y|x′)

)
−
∑
y

W (y|xk)

=
∑
y

W (y|xk) ln

(
W (y|x)∑

x′ Q(x′)W (y|x′)

)
− 1

= D(W (·|xk)||(QW )(·))− 1

This also allows to check that the partial derivatives fulfill the conditions of theorem 3.18. Since (1)
and (2) are satisfied we can invoke Theorem 3.18 with λ′ = λ − 1 to conclude that Q maximizes
I(·|W ) over all input distributions, i.e, that Q achieves capacity. Then,

C = I(Q,W ) =
∑
x

∑
y

Q(x)W (y|x) ln
(

W (y|x)∑
x′ Q(x′)W (y|x′)

)
=
∑
x

Q(x)D(W (·|xk)||(QW )(·)) = λ (t)

We finish by proving the Part b). Because Q maximizes I(·,W ) over all input distributions, we
know by theorem 2 that there exists a λ′ such that

D(W (·, x)||(Q∗W )(·)) ≤ λ′ + 1, ∀x ∈ X (3.33)

D(W (·, x)||(Q∗W )(·)) = λ′ + 1, ∀x : Q∗(x) > 0 (3.34)

From the same computation as in (t) we obtain I(Q,W ) = λ′+1. Because we know that I(Q,W ) =
C it follows that C = λ′ + 1

Example 4 (BEC Channel Capacity). We ask ourselves whether ( 12 ,
1
2 ) is an optimal input distri-

bution to the BEC channel. We start off by writing what the output distributions are given Q.

• (QW )(0) = 1
2 (1− ρ)

• (QW )(? ) = ρ

• (QW )(1) = 1
2 (1− ρ)

We now compute the relative entropy:

D(W (·, 0)||(QW )(·)) = (1− ρ) log(
1− ρ
1−ρ
2

) + ρ log(
ρ

ρ
) + 0 log(

0
1−ρ
2

)

= (1− ρ) log(2) = 1− ρ

Analogously, D(W (·, 1)||(QW )(·)) = 1−ρ. Thus, the capacity of the binary erasure channel is 1−ρ.
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3.5 Data Processing

Proposition 3.19. D(·||·) is convex.

Proof. Consider D(λP1 + λ̄P2||λQ1 + λ̄Q2). First, notice that both λP1 + λ̄P2 and λQ1 + λ̄Q2 are
indeed pmfs.

D(λP1 + λ̄P2||λQ1 + λ̄Q2) =
∑
x

(λP1 + λ̄P2) log(
λP1 + λ̄P2

λQ1 + λ̄Q2
)

≤
∑
x

λP1 log(
λP1

λQ1
) + λ̄P2 log(

λ̄P2

λ̄Q2
)

= D(λP1||λQ1) +D(λ̄P2||λ̄Q2)

3.5.1 Data Processing Inequality for D(P ||Q)

Consider two input distributions Q,P being ’processed’ by a channel W . Then

D(PW ||QW ) ≤ D(P ||Q) (3.35)

Q

P

(QW )(y)

(PW )(y)

Proof.

D(PW ||QW ) =
∑
y

PW (y) log(
PW (y)

QW (y)
) =

∑
y

∑
x

P (x)W (y|x) log(
∑

x P (x)W (y|x)∑
x Q(x)W (y|x)

)

=i)

∑
x

P (x) log(

∑
x P (x)∑
x Q(x)

) ≤ii)

∑
x

P (x) log(
P (x)

Q(x)
) = D(P ||Q)

Where Step i) cancels out the sum over y and the W (y|x) since they sum to 1, and ii) uses the
log-sum inequality.

Data processing can be expressed as a Markov chain. Let X,Y, Z for a Markov chain, which
we will denote as

X −◦− Y −◦− Z (3.36)
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3.5.2 Data Processing Inequality for I(X;Y )

Proposition 3.20.
X −◦− Y −◦− Z =⇒ I(X;Z) ≤ I(X;Y ) (3.37)

Proof. We first decompose I(X; (Y,Z)) into two different ways

I(X; (Y,Z)) = I(X;Y ) + I(X;Z|Y ) = I(X;Z) + I(X;Y |Z)

=⇒ i)I(X;Y ) = I(X;Z) + I(X;Y |Z)

=⇒ ii)I(X;Y ) ≥ I(X;Z)

(3.38)

where i) denotes I(X;Z|Y ) by Markov property and ii) is non-negativity of I(X;Y |Z)

3.6 Jointly Typical Sequences

Definition 3.21 (Jointly Typical Sequences). A(n)
ϵ denotes the set of jointly typical sequences

{(xn, yn)} of length n with respect to a joint distribution pxy. This is formally defined as:

A(n)
ϵ = {(ξ, η) ∈ Xn × Yn : 2−n(H(PXY )+ϵ) < Πn

i=1Pxy(ξi, ηi) < 2−n(H(PXY )−ϵ),

2−n(H(PX)+ϵ) < Πn
i=1Pxy(ξi) < 2−n(H(PX)−ϵ),

2−n(H(PY )+ϵ) < Πn
i=1Pxy(ηi) < 2−n(H(PY )−ϵ)}

(3.39)

Lemma 3.22 (Properties of Jointly AEP). Assumr (Xn, Y n) ∼i.i.d. PXY

• |A(n)
ϵ |< 2−n(H(X,Y )+ϵ)

• P ((Xn, Y n) ∈ A(n)
ϵ ) →n→∞ 1

• |A(n)
ϵ |> 2n(H(X,Y )−ϵ for n large enough

Now consider (x1, y1), ..., (xn, yn) ∼i.i.d. PX × PY , i.e. Xn ⊥⊥ Y n, then

P ((Xn, Y n) ∈ A(n)
ϵ ) < 2−n(I(X;Y )−3ϵ) (3.40)

Proof.

P ((Xn, Y n)) =
∑

(ξ,η∈A(n)
ϵ )

P [Xn = ξn, Y n = ηn] =
∑

(ξ,η∈A(n)
ϵ )

PX(Xn = ξn)PY (Y
n = ηn)

≤
∑

(ξ,η∈A(n)
ϵ )

2−n(H(PX)−ϵ)2−n(H(PY )−ϵ)|A(n)
ϵ |= 2−n(I(X;Y )−3ϵ)

Remark 13. We know that there are about 2nH(PX) (weakly) typical sequences in Xn, and about
2nH(PY ) (weakly) jointly typical sequences in Yn. However, the above lemma shows that there only
about 2nH(PXY ) jointly typical sequences in (X ×Y)n. Thus not all pairs of typical sequences in Xn

and Yn are jointly typical.
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4 Channel Coding Theorem

This will cover the entire process of proving the Channel Coding Theorem, laying down all prereq-
uisites and establishing a proof.

Theorem 4.1. (Channel Coding Theorem) All rates below C are achievable. Specifically, for every
rate R < C, there exists a sequence of (2nR, n) codes with maximum probability of error λn → 0.
Conversely, any sequence of (2nR, n) codes with λn → 0 must satisfy R ≤ C.

4.1 Proving the Converse

The setup: Given

1. a message set M

2. an encoder fn : {1, 2, ...,M} → Xn which yields codewords of length n

3. a decoder ϕn : Yn → {1, 2...,M}

4. λm =
∑

y:ϕ(y)̸=m Πn
i=1W (yi|xi(m)) =

∑
y:ϕ(y)̸=m W (Y n|Xn)

5. P
(n)
e = 1

|M |
∑n

i=1 λi

We will prove that if P
(n)
e tends to zero then R ≤ C(I) = maxQ{I(Q,W )} i.e. R is necessar-

ily upper bounded. Generate message M ∼ Unif(M), then X(M) = (x1, x2, ..., xn) and Y n =
(Y1, Y2, ..., Yn) → M̂ . Fano’s Ineq states that

H(M |Y n) ≤ Hb(P
n
e ) + Pn

e log(|M |−1)

We should prove that the error P
(n)
e = P (M ̸= M̂)

P (M ̸= M̂) =
∑
m

P (M = m)P (M̂ ̸= m|M = m) =
1

M

∑
m

λm = Pn
e

Fano’s Ineq more loose can be stated also as H(M |Y n) ≤ 1 + Pn
e · (nR)

Lemma 4.2. Let Xn ∼i.i.d. PX arbitrary, and Yi is the result of feeding Xi to channel W , then

I(Xn;Y n) ≤ nC(I) (4.1)

Proof.

I(Xn;Y n) = H(Y n)−H(Y n|Xn) =
∑
i

H(Yi|Y i−1)−
∑
i

H(Yi|Y i−1, Xn)

≤
∑
i

H(Yi)−
∑
i

H(Yi|Xi) =
∑
i

I(Xi;Yi) ≤
∑
i

C(I) = nC(I)
(4.2)

We pick M at random thus we have H(M) = log|M |= nR. So, we can write

nR = H(M) = I(M,Y n) +H(M |Y n) ≤ I(M,Y n) + 1 + Pn
e nR
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R ≤ 1

n
I(M,Y n) + 1 + Pn

e R

Taking into consideration that n tends to infinity, that M is sampled iid, and that the error tends
to 0 and lemma 4.1 we get that

R ≤ C(n) +
1

n
+ Pn

e R =⇒ R ≤ C(n)

• use Fano’s inequality, DPI & the previous lemma

• construct a weird encoder that samples a codeword with Q

• then show that nR = H(M), use Fano, DPI to show it’s smaller than nC(I)

4.2 Proving the Direct

• Construct a Weak Typicality Decoder & drive average error prob. to zero via AEP

• show that λmax → 0 by selecting half of the codewords, which would reduce the rate,

4.3 Source Channel Separation

Now that the Channel Capacity Theorem has been proven, we can safely use the fact that

C = C(I) (4.3)

In the concept of source channel separation, we ask ourselves whether encoding the source and
transmitting should completely separated tasks or not, i.e. if knowledge of the source encoding
aids in efficient transmission of information of not. Our communication system will thus look like:

source
source
encoder

channel
encoder

channel
channel
decoder

source
decoder

4.3.1 Fano’s Inequality for Sequences

Proposition 4.3. Let Uk ∈ Uk be a sequence with Y n a sequence of observations. Û(Y n) is a

k-length function of Y n. Let Pe,i denote P [Ui ̸= Ûi], and Pavg = 1
k

∑k
l=1 Pe,l be the average error

probability, then
H(Uk|Û) ≤Fano Hb(Pavg) + Pavg log(|U|−1) (4.4)

Proof.
1

k
H(Uk|Û) =

1

k

∑
i

H(Ui|U i−1, Û) ≤ 1

k

∑
i

(Hb(Pe,i) + Pe,i log(|U|−1))

=
1

k

∑
i

Hb(Pe,i) +
∑
i

Pe,i log(|U|−1) =
1

k

∑
i

Hb(Pe,i) + Pavg log(|U|−1)

≤i) Hb(Pavg) + Pavg log(|U|)

(4.5)

where i) exploits concavity of the binary entropy function
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Let C be in units [ bits
channel use

], H(U) be in units [ bits
source symbols

] , then ρ = k
n [

source symbols
channel use

].

We will show that if H(U) < C, then the source can be communicated reliably with the
separation approach.

Consider that the source is compressed optimally using AEP, so the source encoder simply sends

the ’address’ of the source, which is an element in A(n)
ϵ (PU ). On top of that, we consider the channel

to satisfy λmax < ϵ.
Logically, an error occurs if the source sequence is not typical or if the channel encoder

messed up. Both of these events occus with a probability smaller than ϵ, thus by the union bound
of event, the probability of both occurring is upper bounded by 2ϵ.
Even with combined source channel coding you cannot have P (U ̸= Û) → 0 if H(U)ρ > C

Proof.

1

k
H(Uk) =

1

k
(H(Uk)−H(Uk|Ûk) +H(Uk|Ûk))

≤ 1

k
I(Uk; Ûk) +Hb(Pavg) + Pavglog|U |

≤ 1

k
I(Xn;Y n) +Hb(Pavg) + Pavglog|U |

≤ 1

k
nC ⇒ H(u) ≤ 1

ρ
C

4.3.2 Feebdack Communication

M

m

Xi = f(m,Y i−1)

channel

Y1

Y2, Y3, ...

D

It is a fair argument to believe that feedback communication would allow us to achieve higher
rates, but we will show why it is not true.

Theorem 4.4. (Feedback capacity) The feedback capacity CFB is equal to the channel capacity with
no feedback C.

Proof. Since a non-feedback code is a particular version of a feedback-code (just with no feedback),
then it is safe to assume that

CFB ≥ C (4.6)

The other way around is a bit more tricky. We need to assume that the messages are uniformly
distributed, so that we have

H(M) = nR (4.7)

which we can extend to

nR = H(M)−H(M |Y n) +H(M |Y n) = H(M |Y n) + I(M ;Y n) (4.8)
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which by Fano’s inequality for sequences

nR ≤ 1 + nRP (n)
e + I(M ;Y n) = 1 + nRP (n)

e +H(Y n)−
n∑

i=1

H(Yi|Xi) (4.9)

Using the conditional entropy bound, we get that

I(M ;Y n) ≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi) =

n∑
i=1

I(Xi;Yi) ≤ nC (4.10)

Thus our final inequality is

nR ≤ 1 + nRP (n)
e + nC =⇒ n→∞ nR ≤ nC (4.11)

Thus proving that
CFB = C (4.12)

Example 5 (Typical Decoder of a BSC). Consider a BSC with crossover probability α, and a fixed
codebook. We also have PX(0) = PX(1) = 1

2 .

Remember that a typical decoder will search for pairs (xn(m), yn) such that they are in A(n)(PXY )
ϵ .

If exactly one m̂ fits the criterion, then the decoder outputs this m̂.

We will have a look at A(n)
ϵ (PXY ). Note that

PXY (x, y) = PX(x)WY |X(y|x) (4.13)

i.e.

PXY (0, 0) =
1

2
(1− α) = PXY (1, 1), PXY (0, 1) =

α

2
= PXY (1, 0) (4.14)

This also yields that PY (0) = PY (1) =
1
2 =⇒ H(PX) = H(Y ) = 1 bit. Thus, H(X,Y) = H(Y)

+ H(Y—X) = 1 + Hb(α). BY the AEP, we get

|− 1

n
log

n∏
i=1

p(xi, yi)−H(PXY )|≤ ϵ (4.15)

For a fixed (xn, yn), we denote the Hamming distance between xn and yn to be d, thus

n∏
i=1

PXY (xi, yi) =

n∏
i=1

PX(x)WY |X(y|x) = 2−n
n∏

i=1

WY |X(y|x) = 2−nαd(1−α)n−d−1−Hb(α) (4.16)

Plugging this into our conditions, we get

|− 1

n
log

n∏
i=1

p(xi, yi)−H(PXY )|= |− 1

n
log(2−nαd(1− α)n−d)|

= |1 + d

n
log(

1

α
) +

n− d

n
log(

1

1− α
)− 1−Hb(α)|

= |( d
n
− α) log(

1

α
)− (

d

n
− α) log(

1

1− α
)|

= |( d
n
− α) log(

1− α

α
)|≤ ϵ

(4.17)
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yielding

α− ϵ

|log( 1−α
α )|

≤ d

n
≤ α+

ϵ

|log( 1−α
α )|

(4.18)

which makes sense, as the expected crossovers for n channel uses is α.
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5 Rate Distortion Theory

Also known as vector quantization or lossy data compression, this theory aims to help de-
fine the ’goodness’ of a representation of a source. We will see that this is achieved by defining
a distortion measure, which will quanitify the ’distance’ between the random variable and its
representation.

Example 6. Representing an arbitrary real number will require an infinite amount of bits. How
can we minimize the mean squared error of the representation?

5.1 Formal Problem Definition

Formally, we presume to have a source that produces a sequence Xn ∋ X1, X2, ..., Xn ∼i.i.d. PX .
Our encoding scheme will look like

X1, X2, ..., Xn encoder decoder X̂1, X̂2, ..., X̂n

where X̂ is the representation alphabet.

Definition 5.1. A distortion function is a mapping

d : X × X̂ → R+ (5.1)

Definition 5.2. A distortion function between two sequences xn, x̂n is defined by

d(xn, x̂n) =
1

n

∑
i

d(xi, x̂i) (5.2)

i.e. it is the average per-symbol distortion.

Definition 5.3. Consider an encoder f : X → {1, 2, ..., 2nR} and a decoder ϕ : {1, 2, ..., 2nR} → X .
Then the value

d(Xn, ϕ(f(xn))) (5.3)

is a random variable. This forms a (2nR, n) rate distortion code.

Most of the time, we will need to consider the value

E[d(Xn, ϕ(f(xn)))] (5.4)

If this value is bounded by D < ∞, then D is called the maximal allowed distortion.

Definition 5.4. (R,D) is achievable if for any δ > 0 and large enough n, ∃f, ϕ such that

E[d(Xn, ϕ(f(xn)))] ≤ D + δ (5.5)

Definition 5.5. The rate distortion function R(D) is defined as

R(D) = inf{R} (5.6)

such that (R,D) is achievable. I.e. it is the smallest rate allowing reconstruction with distortion D.

31



Definition 5.6. The distortion rate function D(R) is defined as

D(R) = inf{D} (5.7)

such that (R,D) is still achievable.

Definition 5.7. The information rate distortion function is defined as

R(I)(D) = min
p(x̂|x:

∑
( x̂,x)p(x)p(x̂|x)d(x,x̂)≤D)

{I(X, X̂)} (5.8)

This minimization is over all conditionals p(x̂|x) such that an expected distortion rate over the joint
p(x, x̂) = p(x)p(x̂|x) is lower than D.

5.2 Rate Distortion Theorem

This section will cover the main result of rate distortion theory, as well as its proofs and accompanying
examples.

Theorem 5.8 (Rate Distortion Theorem). The rate distortion for an i.i.d source X with prior
distribution p(X) and bounded distortion function d(x, x̂) is equal to its information rate distortion
function. Thus,

R(D) = R(I)(D) (5.9)

is the minimal achievable rate at distortion D.

The proof will be done in the following subsections. Analogously to the channel coding theorem,
we will prove it in two parts (converse + direct).

5.2.1 Rate Distortion of a Binary Source

In a memoryless binary source setup, we have X ∼ Ber(p) for p ∈ [0, 1] and we will consider the
Hamming distortion dH which counts the number of discrepancies between X and X̂.

Taking our formula, we have

R(I)(D) = min
p(x̂|x:

∑
( x̂,x)p(x)p(x̂|x)d(x,x̂)≤D)

{I(X, X̂)} (5.10)

which we will minimize by

1. Defining I(X, X̂)

2. Finding a lower bound to I(X, X̂)

3. Proving the lower bound is achievable (by construction)

Here we go. Notice that X ⊕ X̂ = 1 ⇐⇒ X ̸= X̂

I(X, X̂) = H(X)−H(X|X̂) =i H(X)−H(X ⊕ X̂|X̂)

≥ii H(X)−H(X ⊕ X̂) ≥iii Hb(p)−Hb(D)
(5.11)

i (X ⊕ X̂)|X̂ is a deterministic one-to-one function of X, thus it has the same entropy as X

ii conditioning reduces entropy
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Figure 3: Rate of a Ber( 12 ) random source

iii (X̂ ⊕ X̂) is a binary random variable, and X̂ ⊕ X̂ = 1 with probability E[X̂ ⊕ X̂] ≤ D

To match the lower bound with equality, we will need to satisfy both ii and iii. For ii, it is
enough to say that (X ⊕ X̂ ⊥⊥ X̂) ⇐⇒ X = X̂ ⊕ Z, Z ⊥⊥ X̂. To match iii, we can simply state
that E[X ⊕ X̂] = D.

Since this implies X ⊕ X̂ = Z, we get that Z ∼ Ber(D), thus X = X̂ ⊕Ber(D) ∼ Ber(p). This
’forces’ X̂ ∼ Ber(q), and we get that

q =
p−D

1− 2D
(5.12)

Our rate distortion function thus looks like (Fig 3):

Remark 14. The maximal rate distortion value for binary source is

R(D)|D=0= H(P ) (5.13)

5.2.2 Converse of the Rate Distortion Theorem

The converse of the rate distortion theorem can be expressed as: for any rate-R encoder-decoder
pair (f, ϕ), we have

E[d(x, ϕ(f(x)))] ≤ D =⇒ R ≥ R(I)(D) (5.14)

It can be restated as
R < R(I)(D) =⇒ E[d(x, ϕ(f(x)))] > D (5.15)

or in words, if we describe X at a rate less than R(I)(D), then we cannot achieve a
distortion of less than D.2 The following proposition gives us the tools to prove this converse.

Proposition 5.9. Here are some useful properties of R(I)(D) (resp R(D)):

2In RD Theory, we wish to minimize the rate, since it is the ’amount’ we require to describe the source
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1. monotonically decreasing

2. convexity

3. continuous

Proof. For monotonicity, it is clear that

R(I)(D + δ) ≤ R(I)(D) ∀δ > 0 (5.16)

since R(I)(D) is the infimum of the feasible set.
For convexity, it is a bit more complicated. We will want to prove that for two values D0, D1

R(λD0 + λ̄D1) ≤ λR(D0) + λ̄R(D1), λ ∈ [0, 1] (5.17)

We consider Di such that ∑
x

∑
x̂

PX(x)P i
X̂|X(x̂|x)d(x, x̂) ≤ Di (5.18)

Since λ ∈ [0, 1], then λP 0
X̂|X + λ̄P 1

X̂|X is also a probability distribution (mixture), so the constraints

are also satisfied, i.e. we have∑
x

∑
x̂

PX(x)(λP 0
X̂|X(x̂|x) + λ̄P 1

X̂|X(x̂|x))d(x, x̂) ≤ λD0 + λ̄D1 (5.19)

Now, considering I(X̂;X) with respect to the joint PX(λP 0
X̂|X + λ̄P 1

X̂|X), and that it is convex,

then we have

I(X̂;X)PX(λP 0
X̂|X

+λ̄P 1
X̂|X

) ≤ λI(X̂;X)PXP 0
X̂|X

+ λ̄I(X̂;X)PXP 1
X̂|X

(5.20)

Finally, since R(I)(D) is the minimum of I(X̂;X), then we can squeeze the mutual information in
our desired inequality:

R(D) ≤ I(Xn, ϕ(f(Xn))) ≤DPI X \; {(X \)

= H(f(Xn))−H(f(Xn)|Xn) = H(f(Xn)) ≤ nR
(5.21)

Using this proof of convexity, we can now prove the converse. Let Di = E[d(xi, x̂i)]& we promise
that 1

n

∑
i Di ≤ D

nR ≥ H(Xn)−H(Xn|X̂n) =
∑
i

H(Xi)−
∑
i

H(Xi|Xi−1, X̂n)

≥
∑
i

H(Xi)−
∑
i

H(Xi|X̂i) =
∑
i

I(Xi, X̂i) ≥
∑
i

R(I)(Di)
(5.22)

which proves our converse bound.
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5.2.3 Direct Part of Rate Distortion Theorem

This part will focus on proving that

∀δ > 0, ϵ̃ > 0 if PX̂|X : EPXPX̂|X
[d(X, X̂)] ≤ D then

∃ codes of rate R = I(X; X̂) + ϵ̃ s.t. E[d(X,ϕ(f(X)))] ≤ D + δ
(5.23)

this basically means that EPXPX̂|X
[d(X, X̂)] ≤ D =⇒ R(I)(D) ≥ R

Lemma 5.10 (Never Give Up). For n independent Bernoulli trials of probability p, the probability
of success tends to 1 and the probability of failure tends to 0 as np → ∞3

Proof.

P (fail) = 1− P (success) = (1− p)n, 1− p ≤ e−p =⇒ (1− p)n ≤ e−pn →np→∞ 0 (5.24)

Lemma 5.11 (Strong Typicality). Recall that the strongly typical set of a given probability distri-
bution P is

T (n)
ϵ =

{
x ∈ Xn : | 1

n
N(a|x)− P (a)|< ϵP (a)

}
(5.25)

Let g : X → R+.

x ∈ T (n)
ϵ =⇒ 1

n

∑
a∈X

g(a) ≤ (1 + ϵ)EP [g(X)] (5.26)

Proof.

1

n

n∑
i=1

g(xi) =
1

n

∑
a∈X

N(a|x)g(a) ≤ 1

n

∑
a∈X

P (a)(1 + ϵ)g(a) (5.27)

Lemma 5.12. Fix 0 < ϵ′ < ϵ. Then for a sufficiently large n, if x ∈ T
(n)
ϵ & Yi ∼iid PY , then

Pr[(X,Y ) ∈ T (n)
ϵ (PXY )] ≥ 2−n(I(X;Y ))+4δXY (5.28)

where 4δXY → 0 as ϵ → 0

Proof. no proof

Now to our proof of the direct. We first fix the conditional PX̂|X & consider an encoder/decoder
pair as follows:{
f : Xn → {1, 2, ..., 2nR} : outputs the first index of a cwd that is strongly typical with the seq.

ϕ : {1, 2, ..., 2nR} → X̂n : j 7→ x̂(j) ∈ X̂n

(5.29)
If no codeword is strongly typical with the source sequence x, we just sent j = 1 & it will be

reconstructed with allowed distortion. We now want to find rate-R codes such that the success
probability is diven to 1.

Since the conditional PX̂|X and the marginal PX are given, we can compute

3success is when at least one success occurs
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1. the joint PX̂,X = PXPX̂|X

2. the marginal PX̂ =
∑

x PX(x)PX̂|X(·|x)

We first create a codebook C where the rows are chosen according to PX̂ . Next up we analyse
the probability of a successful encoding with our two sources of randomness: the codebook and
the source sequence.

P (success) =
∑
C

P (C)P (success|C) =
∑

x∈Xn

PX(x)P (success|X = x) (5.30)

By showing that P (success|X = x) → 1, we will prove our claim, since if the average success
probability tends to 1, then there must exist a codebook C∗ such that P (success|C∗) → 1.∑

x∈Xn

PX(x)P (success|X = x) =
∑

x∈T
(n)
ϵ (PX)

PX(x)P (success|X = x)+

∑
x/∈T

(n)
ϵ (PX)

PX(x)P (success|X = x)

≥
∑

x∈T
(n)
ϵ (PX)

PX(x)P (success|X = x)

(5.31)

By the last lemma, we have a probability of success with 2nR attempts to match a codeword that is

strongly typical with x. This match occurs with probability 2−n(I(X;X̂)+4δ).
By the never give up lemma, we have that if

2nR2−n(I(X;X̂)+4δ) → ∞ (5.32)

then P (success|X = x) → 1.
This allows us to conclude that

R > I(X; X̂) + 4δXX̂ (5.33)
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6 Multi-Terminal Information Theory

This section will cover a brief introduction to distributed data compression, more specifically the
Slepian-Wolf Coding Scheme.

6.1 Distributed Source Codes

Our setup is a joint sequence of random variables

(X1, Y1), (X2, Y2), ..., (Xn, Yn) ∼i.i.d. PXY (6.1)

We will consider a scheme where

1. The (Xn, Y n) sequence is ’correlated’

2. Xn and Y n are separately encoded

3. (Xn, Y n) are jointly decoded

Definition 6.1. A ((2nR1 , 2nR2), n) distributed source code for th ejoint sources (X,Y ) consists of
two encoders

f1 : Xn → {1, 2, ..., 2nnR1}
f2 : Yn → {1, 2, ..., 2nnR2}

(6.2)

and a single decoder

g : {1, 2, ..., 2nnR1} × {1, 2, ..., 2nnR2} → Xn × Yn (6.3)

Definition 6.2. The probability of error of a distributed source code is defined as

P (
en) = P (g(f1(X

n), f2(Y
n)) ̸= (Xn, Y n)) (6.4)

i.e. a mismatch in decoding the encoding.

Definition 6.3. A rate pair (R−1, R2) is said achievable for a distributed source if there exists a
sequence of ((2nR1 , 2nR2), n) codes with probability error Pe such that it is driven to 0. This defines
an achievability region in R2.

6.2 Slepian Wolf Theorem

Intuitively, we would tend to believe that to decode a separately encoded pair (Xn, Y n), we would
require a minimum rate of

R1 +R2 ≥ H(X) +H(Y ) (6.5)

This is however not the case, in a paper written by Slepian and Wolf.4

Theorem 6.4 (Slepian & Wolf Coding). For.a distributed source coding of the source (X,Y ) ∼i.i.d.

PXY , the achievable region is given by the following conditions:

R1 ≥ H(X|Y )

R2 ≥ H(Y |X)

R1 +R2 ≥ H(X,Y )

(6.6)

Again, the proof will be decomposed in two parts: achievability and converse.
4Fun fact, Lapidoth met Jack Wolf
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6.2.1 Achievability of Slepian-Wolf Coding

Our encoding and decoding scheme follows differet semantics. We use a binning technique, in which
the encoder will assign a sequence to one of 2nRi ’bins’ at random. The index of that bin is then
given to the decoder.

f1 : Xn → ∪1 ∪2 ∪3 ... ∪2nR1 (6.7)

For a single source, the decoder will correctly decode if there exists a single typical sequence
assigned to the index received. We can thus re-prove our bound of R > H(X) with this scheme.

P (g(f(x)) ̸= x) ≤ P (x /∈ A(n)
ϵ ) +

∑
x

∑
x′ ̸=x,x′∈A(n)

ϵ

P (f(x′) = f(x))p(x)

≤ ϵ+
∑

x′∈A(n)
ϵ

2−nR ≤ ϵ+ 2−nR|A(n)
ϵ |

= ϵ+ 2−nR2n(H(X)+ϵ) ≤ 2ϵ

(6.8)

as long as R > H(X). We can now extend our argument to distributed sources.
Analysing the error probability, we distinguish 4 cases of error:

1. E0 = {(X,Y ) /∈ A(n)
ϵ (PXY )}

2. E1 = {∃x′ ̸= X : f1(x
′) = f1(X) ∧ (x′, Y ) ∈ A(n)

ϵ (PXY )}

3. E2 = {∃y′ ̸= Y : f2(y
′) = f2(Y ) ∧ (X, y′) ∈ A(n)

ϵ (PXY )}

4. E12 = {∃(x′, y′) : x′ ̸= X, y′ ̸= Y, f1(x
′) = f1(X), f2(y

′) = f2(Y ) ∧ (x′, y′) ∈ A(n)
ϵ (PXY )}

Using the union bound, we can upper bound our probability error

P (n)
e = P (E0 ∪ E1 ∪ E2 ∪ E12) ≤ P (E0) + P (E1) + P (E2) + P (E12) (6.9)

and we will consider each case separately.
By the AEP, P (E0) → 0 as n → ∞, so we can assume P (E0) < ϵ.
The following lemma must be introduced to analyse the next bounds

Lemma 6.5. For any ϵ > 0, Aϵ(X|y) denotes the set of sequences x that are jointly typical with a
fixed sequence y. For a sufficiently large n, we have

|Aϵ(X|y)|≤ 2n(H(X|Y )+2ϵ) (6.10)

With this lemma, we will no analyse the error probability for E1, E2, E12.

P (E1) ≤
∑
(x,y)

p(x, y)
∑

x′ ̸=x,(x′y)∈A(n)
ϵ (PXY )

P (f1(x
′) = f1(x)) =

∑
(x,y)

P (x, y)2−nR1 |Aϵ(X|y)|

≤ 2−nR12n(H(X|Y )+ϵ)

5 (6.11)

By symmetry, we have
P (E1) ≤ 2−nR22n(H(Y |X)+ϵ) (6.12)

both are driven to 0 if R1 > H(X|Y ) and R2 > H(Y |X). Moreover, P (E12) → 0 if R1 + R2 >
H(X,Y ). The average error probability is thus upper bounded by 4ϵ, which is driven to 0 as n → ∞.

5by the above lemma

38



6.2.2 Converse for Slepian-Wolf Coding

Similarly to the single-source case, we will use Fano’s inequality. Let I0 = f1(X
n) and J0 = f2(Y

n).
Then we have

H(Xn, Y n|I0, J0) ≤ P (n)
e n(log|X |+ log|Y|) + 1 = nϵn (6.13)

For the conditional probabilities, we have

H(Xn|Y n, I0, J0) ≤ P (n)
e nϵn (6.14)

and
H(Y n|Xn, I0, J0) ≤ P (n)

ϵ nϵn (6.15)

So using the chain rule,

n(R1 +R2) ≥ H(I0, J0) = I(Xn, Y n; I0, J0) +H(I0, J0|Xn, Y n)

= I(Xn, Y n; I0, J0) = H(Xn, Y n)−H(Xn, Y n|I0, J0) ≥ nH(X,Y )− nϵn
(6.16)
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