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1 Probability Theory Basics

1.1 Rényi Axioms

We will consider the probability of conditional events in a Boolean algebra of events, given Pr[C] ¿
0. The Rényi Axioms are:

1. Positivity: Pr[A|C] ≥ 0

2. Normalization: Pr[A|C] = 1 ⇐⇒ C =⇒ A

3. Summation: Pr[A ∨B|C] = Pr[A|C] + Pr[B|C] for A ∧B = 0

4. Multiplication: Pr[A ∧B|C] = Pr[A|B ∧ C]Pr[B|C]
We can derive a few more useful properties from these axioms, notably the union bound:

Pr[A ∨B] = Pr[A] + Pr[B]− Pr[A ∧B] (1)

which is useful as an inequality1:

Pr[

n∨
i=1

Ai] ≤
n∑

i=1

Pr[Ai] (2)

Lastly, Bayes’ Rule is a useful ’inverse probability’ theorem

P [A|B ∧ C] = P [B|A ∧ C]
P [B|C]

P [A|C] (3)

1.1.1 Random Variables

Definition 1.1. The probability mass function of a random variable Z is denoted:

PZ : Z → [0, 1] : z 7→ PZ(z) = Pr[Z = z] (4)

Definition 1.2. The joint probability of two random variables is given by:

PX,Y : X × Y → [0, 1] : (x, y) 7→ PX,Y (x, y)0Pr[X = x ∧ Y = y] (5)

Definition 1.3. The marginal probability mass function given a joint is given by:

PX(x) =
∑
y∈Y

PX,Y (x, y) (6)

Definition 1.4. The conditional probability mass function for X given Y is given by:

PX|Y=y(x) =
PX,Y (x, y)

PY (y)
(7)

and forms itself a distribution of its own.

This definition leads to interpreting the marginal as the average of the conditionals, since

PX(x) =
∑
y∈Y

PX|Y (x|y)PY (y) (8)

If we consider Y = f(X), we can also define its probability distribution in accordance to PX .

PY (y) =
∑
x∈X

I[f(x) = y]PX(x) (9)

1equality if the Ai are disjoint
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1.2 Vector Representation

To help with our quantum theory formalisation, we will use the vector representation of Probability
Theory. We will consider PY (y) to be the inner product of two vectors.

• Let P = (PX(x))x∈X be a vectorization of the probabilities for a given ordering of X

• Let E(A) = (I[f(x) = y])x∈X be the event vector indicating the occurences of Y = y

Combining the two yields
Pr[A] = P · E(A) (10)

This implies that we only require the atoms of our Boolean algebra of events, as they forms a
basis for our vector representation. Each event vector for atoms is a unit vector in {0, 1}n ∈ Rn.

Example:

Let
E(A) = (1, 0, 0) E(B) = (0, 1, 0) E(C) = (0, 0, 1) (11)

so by using logical OR, we can state that

E(A ∨B) = (1, 1, 0) (12)

Definition 1.5. The set of all probability distributions over Rn is denoted

Prob(n) = {(p1, p2, ..., pn) ∈ Rn : pi ≥ 0,

n∑
i=1

pi = 1} (13)

This definition can be extended to certain spaces we are interested in, i.e. Prob(X) denotes the
set of all distributions over X .

Definition 1.6. The set of all events over Rn is denoted by

Events(n) = {(e1, e2, ..., en) ∈ Rn : ei ∈ {0, 1} ∀i} (14)

1.3 Convexity

Definition 1.7. A convex combination is essentially an average of possible values.

Example:

The expectation is a convex combination of all possible values of a random variable.

⟨Z⟩ =
∑
z

zPZ(z)

Definition 1.8. A convex set is a set closed under convex combination of its elements, i.e.

S = {s1, s2 : ∀λ ∈ [0, 1], λs1 + λ̄s2 ∈ S} (15)

Remark 1. Prob(n) is a convex set in Rn

Definition 1.9. Any arbitrary set can be extended to a convex set by taking all convex combinations
of its elements. This is called its convex hull.
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Definition 1.10. The extreme points of a convex set are the points that cannot be expressed as a
nontrivial comvex combination of other elements.

Example:
In Prob(n), extreme points are deterministic probability distributions.

Definition 1.11. A convex set in which every point has a unique convex decomposition is called a
simplex. The set of probability distributions in Rn forms a simplex and can be embedded in Rn−1

(see image below). In 3 dimensions, a tetrahedron would represent a 4D probability distribution.

Definition 1.12. A convex function f : X → R satisfies the following:

f(λx1 + λ̄x2) ≤ λf(x1) + λ̄f(x2) ∀λ ∈ [0, 1] (16)

Proposition 1.13. Convex functions satisfy Jensen’s inequality:

f(⟨X⟩) ≤ ⟨f(X)⟩ (17)

Remark 2. Events(n) is not a convex set, but we can relax the conditions of the notion of events
to that of stochastic events, which are events with values within [0, 1]. This leads to the set of tests:

Definition 1.14. The set of tests is given by:

Tests(n) = {(t1, t2, ..., tn) ∈ Rn : 0 ≤ ti ≤ 1} (18)

1.4 Independence

Definition 1.15. Two random variables A and B are said independent if and only if

Pr[A ∧B] = Pr[A]Pr[B] (19)

which is equivalent to
Pr[B|A] = P [B] or Pr[A|B] = Pr[A] (20)
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1.4.1 Practical Laws / Bounds

Definition 1.16. The Weak Law of Large Numbers states that for Xi ∼i.i.d. PX with E[X] = µ,
V ar(X) = σ2 the arithmetic mean tends in probability to the true mean as n→ ∞

limn→∞Pr[
1

n
|

n∑
i=1

Xi − µ| < ϵ] = 1 ∀ϵ > 0 (21)

Definition 1.17. Markov’s inequality states that

Pr[X > ϵ] ≤ ⟨X⟩
ϵ

(22)

Definition 1.18. Chebyshev’s inequality states that

Pr[(Y − µ)2 ≥ ϵ] ≤ σ2

ϵ
(23)

Definition 1.19. The Strong Law of Large Numbers states that the arithemtic mean nears the
true mean

Pr[limn→∞
1

n

n∑
i=1

Xi = µ] = 1 (24)
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2 Quantum Theory

Quantum experiments are typically carried out in 3 steps:

• Preparation / Setup

• Dynamics

• Measurement

2.1 Quantum Formalism

Recalling our probability theory vectorization, we had that

• PrP [T ] = T · P

• P ∈ Rn, P ≥ 0, 1n · P ≤ 1

• T ∈ Rn, T ≥ 0, T ≤ 1n

such that our vector structure allows probability computation via the use of an inner product.
Quantum probability will live within a Hilbert space Cd, and probabilies are computed via the
Hilbert-Schmidt inner product:

⟨S, T ⟩ = Tr[S∗T ] (25)

This leads us to the following quantum formalism

• Prρ = Tr[Λρ]

• ρ ∈ Lin(H), ρ ≥ 0, T r[ρ] = 1

• Λ ∈ Lin(H), Λ ≥ 0, Λ ≤ I

This is very analogous to our classical version, in that ρ denotes a certain distribution over states,
and Λ denotes events. Probabilities are also computed via an inner product.

2.1.1 Operators

Recalling the vector representation of probability theory, we will derive an analogous quantum
probability formalism. Our space of interest is the set of operators on a Hilbert space H = Cd,
denotes Lin(H).

Definition 2.1 (Density Operator). An ensemble of quantum states {pk, |ψk⟩} is described by a
density operator

ρ =
∑
k

pk|ψk⟩⟨ψk| ∈ Lin(H) (26)

A density operator can also be seen as the preparation of a quantum system, in multiple possible
states, hence the analogy to a probability distribution.

Properties 2.2. A density operator ρ satisfies the following:

• Tr[ρ] = 1

• ρ ≥ 0
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Proposition 2.3 (Quantum Measurement / POVM). Quantum measurements (or effects) are de-
scribed by a collection {Λ(x)} of measurement operators ∈ Lin(H) such that:

• Λ(x) ≥ 0

• Λ(x) ≤ I

•
∑

x Λ(x) = I

The third condition yields a POVM (positive operator-valued measure).

Definition 2.4. The spectral decomposition of any normal operator A (i.e. A†A = AA†) on
H with respect to an orthonormal basis {|bk⟩} can be done. Let {λk, |ψk⟩} be A’s eigenvalues resp.
eigenvectors, then

A =
∑
k

λk|ψk⟩⟨ψk| (27)

Definition 2.5. The set of states of a quantum system in H is denoted

Stat(H) = {σ ∈ Lin(H) : σ ≥ 0, T r[σ] = 1} (28)

Definition 2.6 (Pure States). A pure state in a quantum system is a state that cannot be written
a a mixture of states. It is an extreme point of our density operator.

Using the spectral decomposition, notice that any any positive operator M can be decomposed as

M =
∑
j

λj |ψj⟩⟨ψj | (29)

If Tr[M ] = 1, then M becomes a density operator. M ’s eigenvalues form a probability dis-
tribution. Thus any projection operator associated |ψ⟩⟨ψ| associated to wavefunction |ψ⟩ is a pure
state.

It follows that the set of states is the convex hull of the pure states.

Theorem 2.7. A density operator ρ is a pure state if and only if

Tr[ρ2] = 1 (30)

2.1.2 Trace of Operators

Proposition 2.8. The trace of a linear operator A on H is defined as the trace on any matrix
representation of A, i.e. for {vk} be an arbitrary ONB of H,

Tr[A] =
∑
k

⟨vk|A|vk⟩ (31)

Proof.

Tr[A] =
∑
j

⟨vj(
∑
j′,k

Ak,j′ |wk⟩⟨wj′ |)|vj⟩ =
∑
j,j′,k

Ak,j′⟨vj |wk⟩⟨wj′ |vj⟩

=
∑
j,j′,k

Ak,j′⟨wj′ |vj⟩⟨vj |wk⟩ =
∑
k,j′

Ak,j′⟨wj′ |(
∑
j

|vj⟩⟨vj |)|wk⟩

=
∑
j′,k

Ak,j′⟨wj′ |wk⟩ =
∑
k

Akk
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Figure 1: Bloch Sphere. Every pure qubit state lies on its surface.

A useful interpretation of the trace of an effect acting on a density operator ρ is to consider ρ as
a mixed state.

Tr[Λρ] =

n∑
j=1

λjTr[Λ|λj⟩⟨λj |] (32)

represents the probability of ρ, but is also interpretable as the avergage of conditional proba-
bilities of Λ given various pure states |λj⟩⟨λj |.

2.1.3 (Non)-Convexity of QPT

Unlike classical probability distributions, the set of states Stat(H) is not convex. An arbitrary mixed
state does not correspond to a unique decomposition into pure states.

The set of effects {Λ(x)} however, is convex, with extreme points being projection operators.

2.2 Qubits

A qubit is a two-dimensional quantum system. The most typical basis is the computational basis,
denoted {|0⟩, |1⟩}. The pure states of a qubit a defined as:

|ψ⟩ = a|0⟩+ b|1⟩, |a|2 + |b|2 = 1 (33)

2.2.1 Bloch Sphere and Vectors

Definition 2.9 (Bloch Sphere). A useful parametrization of a qubit |ψ⟩ is via spherical coordinates:

|ψ⟩ = cos(
θ

2
)|0⟩+ sin(

θ

2
)|1⟩ (34)

which yields a sphere a states called the Bloch sphere.

Definition 2.10 (Bloch Vectors). Using our previous parametrization and the cardinal directions
x̂, ŷ, ẑ of the Bloch sphere, we can describe any state with the Bloch vector n̂:

n̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (35)
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Remark 3. A particularity of Bloch vectors is that |n̂⟩ and | − n̂⟩ are orthogonal. This is quite
counter intuitive, but remember that |0⟩ and |1⟩ form an orthonormal basis of qubits.

From this, we note that the 6 cardinal directions of the Bloch sphere {±x̂,±ŷ,±ẑ} form three
orthogonal bases.

Definition 2.11 (Pauli Matrices). 2 The three bases directions {±x̂,±ŷ,±ẑ} are the eigenbases of
the Pauli operators.

σX = |0⟩⟨1|+ |1⟩⟨0| ∼=
[
0 1
1 0

]
(36)

σY = −i|0⟩⟨1|+ i|1⟩⟨0| ∼=
[
0 −i
i 0

]
(37)

σZ = |0⟩⟨0| − |1⟩⟨1| ∼=
[
1 0
0 −1

]
(38)

Definition 2.12 (Pauli Operators). Moreover, the three Pauli matrices, along with the identity
matrix I2 form a basis for Hermitian operators in H = C2.

2.2.2 Pauli representation of density operators

Since the Pauli operators along with identity form a basis of Lin(H), any operator A can take the
form:

A = a0I+ a⃗ · σ⃗ (39)

where a⃗ = x̂ax + ŷay + ẑaz and σ⃗ = x̂σX + ŷσY + ẑσZ . This yields

A = a0I+ axσX + ayσY + azσZ (40)

The eigenvalues of A are λ± = a0 + ||⃗a||, with corresponding eigenstates | ± â⟩, with â = a⃗
||⃗a|| . We

may immediately conclude that projection operators ρ or the form ρ = |n̂⟩⟨n̂| can be written as:

ρ = |n̂⟩⟨n̂ =
1

2
(I+ n̂ · σ⃗) (41)

Any density operator on a qubit can be written as

ρ =
1

2
[I+ r · σ] (42)

where σ is the 3d vector [σX , σY , σZ ].

Remark 4. If ρ describes a pure state, then |r| = 1.

2.3 Dirac Notation

2.3.1 Vectors

Definition 2.13 (Bra-Ket as a linear map). Consider ket as the mapping:

|ψ⟩ : C → H : z 7→ zψ (43)

2basically spinors
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Note that all expressions are compositions of linear maps. Thus, bra is the linear mapping:

⟨ψ| : H → C : u 7→ ⟨ψ, u⟩ (44)

The composition of the maps is:

⟨ϕ| · |ψ⟩ = ⟨ϕ|ψ⟩ : C → C : z 7→ z⟨ϕ, ψ⟩ (45)

The other composition is defined as

|ϕ⟩⟨ψ| : H → H : θ 7→ |ϕ⟩⟨ψ|θ⟩ (46)

and if ψ = ϕ, then this mapping is a projection of θ onto ψ.

Remark 5. Notice that
Tr[|ψ⟩⟨ϕ|] = ⟨ϕ|ψ⟩ (47)

Also, any map S ∈ Lin(H) can be written as a linear combination of outer products:

S =
∑
i

|ui⟩⟨vi| (48)

Example:

I =
∑
i

|bi⟩⟨bi| (49)

for any choice of basis {|bi⟩}i. Moreover, if S =
∑

i |ui⟩⟨vi|, then

Tr[S] =
∑
i

⟨vi|ui⟩ (50)

Remark 6. The trace operator Tr is cyclical, i.e.

Tr[ST ] = Tr[TS] Tr[S∗] = Tr[S]∗ (51)

2.3.2 Matrices

Given an orthonormal basis {|bk⟩}dk=1, S ∈ Lin(H) has components

Sjk = ⟨bj |S|bk⟩ (52)

Remark 7. The outer product (matrix) |bj⟩⟨bk| is all-zero except for a 1 in the j-th row and the
k-th column.

2.3.3 Tensors

Tensors are essentially a product which is compatible with linearity of operators. In our case, we
will define a particular product.

Definition 2.14. In Dirac notation, for two bases {|bj⟩A}dA
j=1 and {|b′k⟩B}

dB

k=1 of systems HA and
HB respectively, the basis of the tensor product of the two systems (HA ⊗HB) is denotes

{|bj⟩A ⊗ |b′k⟩B} (53)

12



Properties 2.15. For two vectors |u⟩ ∈ HA, |v⟩ ∈ HB and two maps S ∈ Lin(HA,H′
A), T ∈

Lin(HB ,H′
B) we have that

• ⟨u⊗ v, u′ ⊗ v′⟩ = ⟨u|u′⟩⟨v|v′⟩

• S ⊗ T ∈ Lin(HA ⊗H′
A,HB ⊗H′

B) such that

(S ⊗ T ) : (u⊗ v) 7→ (Su)⊗ (Tv) (54)

I.e. the maps act on their respective subsystems. From the above property it is also safe to say that

Lin(HA,H′
A)⊗ Lin(HB ,H′

B)
∼= Lin(HA ⊗H′

A,HB ⊗H′
B) (55)

2.3.4 Partial Trace

Partial trace is very useful to ’trace out’ subsystems of composite systems. We will focus on the
Dirac notation to work out a good system and way of picturing it.

Definition 2.16 (Partial Trace). Let A,B be quantum systems A⊗B be their composite system.
For states of the form SA ⊗ TB, it is defined as

TrB : SA ⊗ TB 7→ Tr[TB ]SA (56)

In particular, consider B has an orthonormal basis {j}. The partial trace over B of a composite
system A⊗B is an operation

TrB : Lin(HA ⊗HB) → Lin(HA)
3 : ρAB 7→

∑
j

(IA ⊗ ⟨j|B)ρAB(IA ⊗ |j⟩B) (57)

Moreover, the partial trace operator TrB commutes with left and right operations of an operator
of the form TA ⊗ IB

TrB [SAB(TA ⊗ IB)] = TrB [SAB ]TA

TrB [(TA ⊗ IBSAB ] = TATrB [SAB ]
(58)

Consider the case where we want to simply measure subsystem A with a set of POVMs {ΛA(x)}.
Then we can apply the partial trace on B as follows:

P (x) = TrAB [(ΛA(x)⊗ IB)|Φ⟩⟨Φ|AB ] = TrA[ΛA(x)

dB∑
j=1

⟨bj |(|Φ⟩⟨Φ|AB)|bj⟩] (59)

Example:
For an idea of how to compute it, consider ρ = |00⟩⟨00| = (|0⟩ ⊗ |0⟩)(⟨0| ⊗ ⟨0|) ∈ Lin(A⊗B). Then

TrB(ρ) =
∑
j∈0,1

(IA ⊗ ⟨j|)ρ(IA ⊗ |j⟩) = (IA ⊗ ⟨0|)ρ(IA ⊗ |0⟩) + (IA ⊗ ⟨1|)ρ(IA ⊗ |1⟩)

= (IA ⊗ ⟨0|)(|0⟩ ⊗ |0⟩)(⟨0| ⊗ ⟨0|)(IA ⊗ |0⟩) + (IA ⊗ ⟨1|)(|0⟩ ⊗ |0⟩)(⟨0| ⊗ ⟨0|)(IA ⊗ |1⟩)

= (|0⟩ ⊗ ⟨0|0⟩)(⟨0| ⊗ ⟨0|0⟩) + (|0⟩ ⊗ ⟨1|0⟩)(⟨0| ⊗ ⟨0|1⟩) = |0⟩⟨0| ∈ Lin(HA)

3is a morphism from the composite to the single system, as seen in ACT
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Example:
Let |Ψ⟩AB = 1√

2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) be the maximally entangled state. We can denote the

bases {|0⟩A, |1⟩A}, {|0⟩B , |1⟩B} in vector form:

|0⟩A =

[
1
0

]
A

, |1⟩A =

[
0
1

]
A

, |0⟩B =

[
1
0

]
B

, |1⟩B =

[
0
1

]
B

The composite basis elements {|0⟩A ⊗ |0⟩B , |1⟩A ⊗ |1⟩B} are thus

|0⟩A ⊗ |0⟩B =


1
0
0
0

 , |1⟩A ⊗ |1⟩B =


0
0
0
1


Thus,

|Ψ⟩AB =


1√
2

0
0
1√
2

 =⇒ |Ψ⟩⟨Ψ|AB =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


Now, suppose we only wish to measure subsystem A for |0⟩A or |1⟩B , so we will measure |ψ⟩AB

with (σz)A ⊗ IB . The marginal probabilities are as follows.

P (0) = Tr[(|0⟩⟨0| ⊗ IB)|Ψ⟩⟨Ψ|] = TrA[|0⟩⟨0| · TrB [IB |Ψ⟩⟨Ψ|]]

= TrA[|0⟩⟨0| · TrB [|Ψ⟩⟨Ψ|]] = TrA[|0⟩⟨0| ·
1

2
TrB [


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

]] = 1

2

In Dirac notation, it becomes less cumbersome:

P (0) = Tr[(|0⟩⟨0| ⊗ IB)|Ψ⟩⟨Ψ|] = TrA[|0⟩⟨0| · TrB [IB |Ψ⟩⟨Ψ|]] = TrA[|0⟩⟨0| · TrB [|Ψ⟩⟨Ψ|]]

= TrA[|0⟩⟨0| · TrB [
1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)]] = TrA[|0⟩⟨0|]

2.4 Entanglement

Multiple quantum systems are described via the tensor product. For two systems A,B (or HA,HB),
we can either denote the composite system as AB,HAB or HA ⊗HB .

Operators are subscripted to denote which system they belong to. For example, MA ∈ Lin(HA)
and MAB ∈ Lin(HAB). We can also denote transformations of systems by writing MAB|A ∈
Lin(HA,HAB).

Definition 2.17 (Product State). Let |ψ⟩ ∈ HA, |ϕ⟩ ∈ HB be pure states in their respective systems.
We will first denote correspondence to a system by subscripting the kets, i.e. |ψ⟩A, |ϕ⟩B. The
product state of these two states in HAB is

|ψ⟩A ⊗ |ϕ⟩B (60)

All superpositions of product states are contained in HAB since it is a vector space.
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Definition 2.18 (Entangled State). Any composite state in HAB that is not a product state is
an entangled state.

Example:
The state

|Ψ⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

is an entangled state. It is actually referred to as the maximally entangled state.

The weirdness of entanglement comes from the fact that the state is composite. Consider |Ψ⟩AB

as above. Measuring is with the POVMs {ΠAB , IAB −ΠAB} for ΠAB = |Ψ⟩⟨Ψ| is as good as deter-
ministic, but measuring with σZ ⊗ IB is probabilistic. This is very strange, as the joint ’probability’
is deterministic, but not the marginals...

2.4.1 Bell Bases and Weyl-Heisenberg Operators

For two spacesHA,HB of orthonormal bases {|aj⟩}dA
j=1, {|bj⟩}

dB
j=1, then {|aj⟩⊗|bk⟩} is an orthonormal

basis of HAB .

Definition 2.19 (Bell Basis). The basis of entangled two qubit states can be described by

|Φ00⟩ =
1√
2
(|00⟩+ |11⟩), |Φ01⟩ =

1√
2
(|00⟩ − |11⟩)

|Φ10⟩ =
1√
2
(|01⟩+ |10⟩), |Φ11⟩ =

1√
2
(|01⟩ − |10⟩)

(61)

Let |Φ⟩ denote |Φ00⟩, then all 3 other states are describable as:

|Φjk⟩ = I⊗ (σj
Xσ

k
Z)|Φ⟩ (62)

Definition 2.20 (Canonical Maximally Entangled State). For d-dimensional systems, we define
this as:

|Φ⟩AB =
1√
d

∑
k∈Zd

|k⟩A ⊗ |k⟩B (63)

Definition 2.21 (Weyl-Heisenberg Operators). We define the shift and clock operators as:

U =
∑

|k + 1⟩⟨k|, V =
∑

ωk|k⟩⟨k| (64)

We notice that we can now define a basis for entangled states in d dimensions using:

|Φjk⟩AB = IA ⊗ U j
BV

k
B |Φ⟩AB (65)

2.4.2 Classical-Quantum States

Density operators can also be used to represent classical information (diagonal operators). Composite
states with a classical and quantum part can thus be represented with the tensor of each state.

ρX =
∑
x∈X

PX(x)|bx⟩⟨bx| (66)
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and suppose we have a quantum state ρA (a collection of φA(x)
4 states) that we can index with x,

we thus get

ρXA =
∑
x∈X

PX(x)|bx⟩⟨bx| ⊗ φA(x) (67)

We can relate CQ states to ensemble decompositions of density operators. Consider

ρA =

n∑
x=1

φA(x) (68)

with the φA subnormalized, so that PX(x) = TrA[φA(x)] forms a probability distribution. We can
let ϕA(x) = φA(x)/PX(x), and we thus have

ρA =
∑
x∈X

PX(x)ϕA(x) (69)

2.4.3 Operator-Vector Isomorphism

This section will demonstrate that we can ’unravel’ linear operators into bipartite vectors.

Definition 2.22 (Unnormalized Maximally Entangled State). Let {|aj⟩}dA
j=1 be an orthonormal basis

of HA and HA′ ∼= HA.

|Ω⟩AA′ =

dA∑
j=1

|aj⟩A ⊗ |a′j⟩A′ (70)

Let V : Lin(HA,HB) → HA ⊗HB be a map from linear operators MB|A to bipartite vectors by
acting as:

V :MB|A 7→ IA ⊗MB|A′ |Ω⟩AA′ (71)

with inverse
V −1 : |Ψ⟩AB 7→AA′ ⟨Ω|Ψ⟩A′B (72)

For more intuition, consider this:

MB|A ∈ Lin(HA′ ,HB), |Ω⟩AA′ ∈ Lin(C,HA ⊗HA′)

=⇒ MB|A|Ω⟩AA′ ∈ Lin(C,HA ⊗HB) ∼= HA ⊗HB

(73)

For the inverse it is a bit trickier.

AA′⟨Ω|Ψ⟩A′B ∈ Lin(HA,HB) = (
∑
j

⟨bj |A ⊗ ⟨bj |A′)(
∑
kl

Ψjk|bj⟩A′ ⊗ |b′j⟩B)

=
∑
jk

Ψjk|b′k⟩B⟨bj |A ∈ Lin(HA,HB)
(74)

A good way to think about it is to consider the operator-vector isomorphism to be a ’bra-ket’
inverter. Like it’s going to transfer |·⟩ to ⟨·| on subsystem A via application or inner product with
|Ω⟩AA′

pemnis

4we suppose that HA
∼= HX
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3 Quantum Channels

3.1 Classical and Quantum Channels

Just as with classical channels, quantum channels are meant to describe the change in an experi-
mental setup due to time evolution, external interference, measurement, and so forth.

Quantum channels are supposed to relay quantum states to other quantum states, i.e. map
density operators to density operators.

Definition 3.1 (Superoperator). A superoperator is a map EB|A which acts on density operators
in A and outputs density operators in B. Formally,

EB|A : Lin(HA) → Lin(HB) : ρA 7→ σB (75)

The set of superoperators from Lin(HA) to Lin(HB) is denoted Map(HA,HB).

Definition 3.2 (Trace Preserving). A superoperator E is said trace preserving if

Tr[E [ρA]] = Tr[ρA] ∀ρA ∈ Lin(HA) (76)

Definition 3.3 (Complete Positivity). Unlike regular operators, a superoperator EB|A can also be
completely positive, if EB|A ⊗ IR is positive for all HR.

Definition 3.4 (Quantum Channel). A quantum channel is a superoperator EB|A that is

1. completely positive

2. trace-preserving

The set of channels from Lin(HA) to Lin(HB) is denoted Chan(A,HB) or Map(A,HB).

3.2 Kraus Representation

The set of completely positive superoperators is closed under sum and addition. It is also reasonable
to assume that general quantum operations E : Lin(H) → Lin(H) must satisfy:

1. E is completely positive

2. 0 ≤ Tr[E [ρ]] ≤ 1 since ρ is a density operator

3. E is linear, i.e. E [
∑

i piρi] =
∑

i piE [ρi], ∀pi ≥ 0,
∑

i pi = 1

Theorem 3.5 (Kraus / Operator-Sum Representation). A superoperator EB|A ∈ Map(HA,HB) is
completely positive if and only if there exists a set of Kraus operators {K(j) ∈ Lin(HA,HB)}nj=1

such that

EB|A : ρA 7→
n∑

j=1

KB|A(j)ρAK
∗
B|A(j) (77)

Moreover, EB|A is trace-preserving if

n∑
j=1

KB|A(j)K
∗
B|A(j) = IA (78)
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This representation has very important implications, notably that anything can be seen as a
quantum channel.

Example:
Any state ρ ∈ Lin(H) is a channel 1 7→ ρ. If ρ = |ψ⟩⟨ψ| is a pure state, then quite obviously, the
Kraus operators are {|ψ⟩}.

For an arbitrary ρ, any pure state ensemble decomposition {(P (x), |ψX⟩)} gives rise to Kraus
operators

K(x) =
√
P (x)|ψx⟩

Thus if a channels acts probabilistically on the input, we can easily represent its action via Kraus
operators.

3.3 Single Qubit Quantum Noise Channels

Here we will explore a few examples of typical noise channels in operator-sum representation.

3.3.1 Bit-flip, Phase-flip and Bit-Phase-flip Channels

These channels are also called Pauli channels, as their Kraus operators are proportional to the
Pauli matrices. Pauli channels thus always look like this:

EPauli : ρ 7→
∑
jk

P (j, k)σj
Xσ

k
Zρσ

k
Zσ

j
X

for a distribution P (j, k).
A quick reminder that the state of a single qubit can be vectorially described as

ρ =
1

2
(I+ r⃗ · σ⃗) = 1

2

[
1 + rx rx − iry
rx + iry 1− rz

]
(79)

Definition 3.6 (Bit-flip Channel). The bit-flip channel describes a flip (via σX) of the qubit, which
appears with probability p. I.e. with probability 1− p, it is the identity channel, and with probability
p it is σX . This gives rise to the Kraus operators:

K(0) =
√
1− pI, K(1) =

√
pσX (80)

Its action is thus

EBF [ρ] =
∑
j=01

K(j)ρK∗(j) = K(0)ρK∗(0) +K(1)ρK∗(1)

= (1− p)ρ+ pσXρσX =
(1− p)

2
(I+ r⃗ · σ⃗) + p

2
(σ2

X + rxσ
3
X + ryσXσY σX + rzσXσZσX)

=
(1− p)

2
(I+ r⃗ · σ⃗) + p

2
(I+ rxσX − ryσY − rzσZ)

=
1

2
(I+ rxσX + (1− 2p)ryσY + (1− 2p)rzσZ)

(81)

which is equivalent to a rescaling of the y and z components by 1− 2p.
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Figure 2: (Left) Bit-flip, (Middle) Phase-flip and (Right) Bit-Phase-flip

Definition 3.7 (Phase-flip Channel). Analogously to the bit-flip channel, it flips the phase with
probability p using the Pauli Z σZ operator. Its Kraus operators are thus:

K(0) =
√
1− pI,

√
pσZ (82)

Its action is described as follows:

EPF [ρ] =
1

2
(I+ (1− 2p)rxσX + (1− 2p)ryσZ + rzσZ) (83)

which corresponds to a rescaling of the x and y components with factor 1− 2p.

Definition 3.8 (Bit-Phase-flip Channel). Finally, this channel is mediated via the Pauli Y σY
operator. Note that σY = iσZσZ . Thus its Kraus operators are

K(0) =
√

1− pI, K(1) =
√
pσY (84)

and its action is

EBPF [ρ] =
1

2
(I+ (1− 2p)rxσX + ryσY + (1− 2p)rzσZ) (85)

Visually, all these channels describe a ’compression’ along their respective Pauli axis, see their
action on the Bloch sphere in Fig 2.

3.3.2 Depolarizing Channel

This channels maps any qubit to the maximally entangled qubit (12 I) with probability p, i.e. the
action of the channel is

ED[ρ] = (1− p)ρ+
p

2
I (86)

We can convert this into operator-sum representation using the relation

I =
1

2
(ρ+ σXρσX + σY ρσY + σZρσZ) (87)
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thus the action of the channel becomes

ED[ρ] = (1− p)ρ+
p

4
(ρ+ σXρσX + σY ρσY + σZρσZ)

= (1− 3p

4
)ρ+

p

4
(σXρσX + σY ρσY + σZρσZ)

(88)

and since all Pauli operators are self-adjoint, then the Kraus operators of the depolarizing channel
are:

K(0) =

√
1− 3p

4
I, K(1) =

√
p

4
σX , K(2) =

√
p

4
σY , K(3) =

√
p

4
σZ (89)

Moreover, the depolarizing channel is a combination of the bit-flip, phase-flip and bit.phase-flip
channels. It rescales the entire Bloch sphere with a factor of (1− 2p)2.

3.3.3 Amplitude Dampening Channel

This channel is somehow analogous to the classical Z-channel:

0

1

1

r

1− r

1

0

The amplitude dampening channel describes spontaneous emission, in which an excited state
|1⟩ jumps to the ground state |0⟩ with probability p ∈ [0, 1]. The Kraus operators of this channel
are

K(0) =

[
1 0
0

√
1− p

]
K(1) =

[
0

√
p

0 0

]
(90)

3.4 Choi Isomorphism

In classical information theory, we can define a joint distribution between the input and output space.
This is also doable in the case of quantum channels, and on top of that via the Choi isomorphism,
the action of a quantum channel is made describable as a marginalization over the input.

Definition 3.9 (Choi Map). For HA
∼= HA′ , the Choi map turns quantum operation into bipartite

states:
C :Map(HA,HB) → Lin(HA ⊗HB) : EB|A 7→ EB|A′ [ΩAA′ ] (91)

Definition 3.10 (Choi Operator). The Choi operator of a quantum operation EB|A is the resulting
of applying the choi map to it:

C(EB|A) = EAB ∈ Lin(HA ⊗HB) (92)

Remark 8. Like in the operator-vector isomorphism, it is more intuitive to think of it as ’swapping’
bra’s and ket’s in the Kraus operators of the channel. Applying then channel to ΩAA′ will ’collapse’
the opposing bra-kets into ’aligned’ kets.
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Theorem 3.11 (Choi Isomorphism of Superoperators and Bipartite Operators). The Choi Map C
is an isomorphism between Map(HA,HB) and Lin(HA ⊗HB): The inverse is C−1 acts as follows:

C−1(MAB) : ρA 7→ TrA[TA[ρA]MAB ] (93)

where TA denotes the transpose over system A.

Proof. TODO (bruh)

Remark 9. It turns out that Choi operators that correspond to completely positive superoperators
and positive semidefinite bipartite operators. This implies that the study of channels is reduced to
the study of positive semidefinite operators.

Theorem 3.12 (Choi Representation). A superoperator EB|A is completely positive if and only if
it’s corresponding Choi operator EAB = C(EB|A) ≥ 0.

Moreover, it is trace-preserving if and only if TrB [EAB ] = IA

Proof. TODO (bruh2)

3.5 CQ and QC Channels

As we have seen in Quantum Probability Theory, classical probability distributions are encapsulated
in diagonal quantum density operators. Let Lin(HX) and Lin(HA) denote a classical system and a
quantum system respectively.

Definition 3.13 (Classical-Quantum Channel). A device that can prepare one of many quan-
tum state turns classical information into quantum information, where the input |x⟩⟨x|X is mapped
to ρA(x), for an orthonormal basis {|x⟩X}.

Considerations respective to off-diagonal inputs |x⟩⟨y| are simply discarded by the channel.
The Kraus operators of such a CQ channel are:

{KA|X(x) = |ψx⟩A⟨x|X} (94)

Definition 3.14 (Quantum-Classical Channels). On the other hand, measurements are a good
example of QC channels, as they produce classical information out of quantum information. The
mneasurement can be seen as a channel taking a density operator ρA as an input, and maps it to an
elements of a probability distribution.

MX|A : ρA 7→
∑
x∈X

TrA[ΛA(x)ρA]|x⟩⟨x|X (95)

for a POVM {ΛA(x) : x ∈ X}.

Remark 10. By the Kraus representation, it is actually true that all CQ channels are state
preparations and all QC channels are measurements.

Proposition 3.15. The Kraus representation Theorem also implies that every quantun channel can
be regarded as a quantum measurement, followed by forgetting the measurement result, i.e.

EB|A = TrX ◦QXB|A (96)
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Proof. Let {K(x)}nx=1 be the Kraus operators of EB|A, then {K̂(X) = K(x)⊗|x⟩X} are also a valid
set of Kraus operators for an orthonormal basis {|x⟩X}.

The quantum instrument is supposed to output

QXB|A[ρA] =

n∑
x=1

|x⟩⟨x|X ⊗KB|A(x)ρAK
∗
B|A(x) (97)

Then clearly EB|A = TrX ◦QXB|A

3.6 Stinespring

This section will explain how to interpret measurements and quantum channels as unitary dynamics.
Simply by ’expanding’ their degrees of freedom.

3.6.1 Purification

Definition 3.16. A purification of ρA is a normalized composite state |ΨAB⟩ such that

Tr[|Ψ⟩⟨Ψ|AB ] = ρA (98)

System B can be referred to as the purifying system. Notice that the above formula ’forces’ ΨAB to
be a product state (hence pure state), since tracing out B yields ρA.

We can now consider mixed states as pure states on a higher-dimensional system. By eigende-
composition, we can break down any state into its eigenvectors and ’append’ a basis element of B
to each eigenvectors.

ρA =

r∑
k=1

λk|ξk⟩⟨ξk| =⇒ ΨAB =

r∑
k=1

λk|ξk⟩⟨ξk| ⊗ |bk⟩⟨bk| (99)

for any orthonormal basis of B {|bk⟩}rk=1, where r is the number of non-zero eigenvalues of ρA. This
implies that the system B must have dimension at least as large as the rank of ρA.

Remark 11. If ρA is represented in an ensemble decomposition as

ρA =
r∑

z=1

√
PZ(z)|ϕz⟩A (100)

then it can be purified as follows

|Ψ⟩AB =

r∑
z=1

√
PZ(z)|ϕz⟩A ⊗ |bz⟩B (101)

This above remark points to the fact that pure state ensembles and purifications are as good
as the same concept.

Definition 3.17. The canonical purification is very useful, and is as follows:

ρA 7→ |Ψ⟩AA′ = (
√
ρA ⊗ IA′)|ΩAA′⟩ (102)

22



Proposition 3.18 (Schmidt Decomposition). For any |Ψ⟩AB there exist orthonormal bases {|ξj⟩A}dA
j=1

and {|ηj⟩B}dB
j=1, n ≤ min{dA, dB} and Schmidt coefficients {sk}nk=1 such that

|Ψ⟩AB =

n∑
j=1

sk|ξj⟩A ⊗ |ηj⟩B (103)

This implies that any composite state in HAB can be considered as a purification of some state
in HA or HB.

Notice that if we consider ψ⟩AR and |φ⟩AB and their Schmidt decompositions, we get that

TrR[ψAR] = TrB [φAB ] =
∑
k=1

s2k|ξk⟩⟨ξk|A (104)

Now suppose that ρA = |ϕ⟩⟨ϕ|A can be purified into 5

|ψ⟩AB =

n∑
k=1

sk|ξk⟩A ⊗ |ηk⟩B & |ψ′⟩AC =

n∑
k=1

sk|ξk⟩A ⊗ |η′k⟩C (105)

then notice that we can related both purifications by using a transformation

VC|B : HB → HC : |ηk⟩B 7→ |η′k⟩C

Since both bases {|ηk⟩B} and {|η′k⟩C} are orthonormal, then it is safe to conclude that VC|B
must be an isometry.

Proposition 3.19. All purifications of an arbitrary ρA are related by isometry or unitary.

Remark 12. Using the canonical purification, we can now write any purification as follows:

|Ψ′⟩AR = (
√
ρA ⊗ VR|A′)|ΩAA′⟩ (106)

3.6.2 Steering

We have just seen that pure state ensembles can be recovered from purifications with the correct
measurements. We can extend this concept to handpicking our ensemble via measurements.
We will see how to pick those measurements,.

Proposition 3.20. (Unitary relation of ensemble decompositions) For any density operators ρ, let
{(pk, |φk⟩)} and {(qk, |ϕk⟩)} be two different ensemble decompositions of ρ. Then there exists a n×n
unitary matrix U such that

√
qj |ϕ⟩ =

n∑
k=1

Ujk
√
pk|φk⟩ (107)

This implies that ensemble decompostions of ρ are all related by a unitary operator.

By this unitary relation, every purification can generate every possible ensemble decomposition
by suitable measurement of the purifying system.

5via Schmidt
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If we have the purifications

ΨAB =

n∑
k=1

p(x)|ϕA(x)⟩⟨ϕA(x)| ⊗ |bk⟩⟨bk| & Ψ′
AB =

n∑
k=1

q(x)|φA(x)⟩⟨φA(x)| ⊗ |b′k⟩⟨b′k| (108)

then measuring B with Πk = |bk⟩⟨bk| yields {(pk|ϕk)} and measuring B with Π′
k = U∗|bk⟩⟨bk|U will

yield {(qk|φk)}.

Proposition 3.21. To steer the canonical purification |ψ⟩AA′ to a CQ state by measurement on A′,
we measure using ΛA′(x)T

Proposition 3.22. If |Ψ⟩AB is a purification and ρXA =
∑n

k=1 PX(x)|x⟩⟨x| ⊗ ρA(x) is a CQ
extension of ρA, then there exists a measurement MX|B on ΨAB such that

MX|B [ΨAB ] = ρXA

Moreover, we know that
|Ψ⟩AB = (

√
ρA ⊗ VB|A′)|Ω⟩AA′

which relates the purification to the canonical via VB|A, so we can relate the measurements via VB|A
as follows:

ΓB(x) = VB|AΛA(x)
TV ∗

B|A

such that measuring ΨABwithΓB(x) allows us to steer.

3.6.3 Dilation

The dilation of a quantum channel leads to the Stinespring representation. It is very analogous
to the Choi isomorphism, but for channels (i.e. superoperators). Using the Choi isomorphism, we
get:

EB|A[ρA] = TrA[EBAρ
T
A] = TrAR[VBR|AρA(V

∗
BRA

)] (109)

This implies that the action of a quantum channel is nothing more than purifying our density
operator to the environment R, applying uniform dynamics (via isometries) and tracing out the
environment.

Theorem 3.23. (Strinespring) A map EB|A is completely positive if and only if there exists HR

and VBR|A with
EB|A[ρA] = TrR[VBR|AρAV

∗
BR|A] (110)

The smallest dr is no larger than dAdB, and the map is trace preserving if and only if VBR|A is an
isometry.

Proposition 3.24. (Stinespring Isometries from Kraus Operators) We can directly contruct the
Stinespring representation out of a set of Kraus operators:

VBR|A =

n∑
x=1

KB|A(x)⊗ |bx⟩R (111)

Proposition 3.25. (Unitary Relation of Kraus representations) Let {K(i)}ni=1 and {K ′(j)}mj=1 be
two Kraus representations of the the same superoperator E and set l = max{m,n}. There exists a
unitary l × l matrix U such that

K ′(j) =
∑
i

UjiK(i) (112)

This is like a vector - matrix-vector equation.
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Definition 3.26. (Channel Complement) Let EB|A be a quantum channel. By Stinespring, we
can define the channel complement E|A[ρA] = TrB [VBR|AρAV

∗
BR|A]. I.e. we are observing the

information that is ’left’ in the environment upon action of the channel.

3.7 Relating Kraus, Choi and Stinespring

We have now all the tools to compare the three representations we’ve covered.

Proposition 3.27. For any two dilations VBR|A and VBR′|A of EB|A, they are related by a partial
isometry WR′|R such that VBR′|A = W − R′|RVBR|A. If dim(HR′) > dim(HR), then it is an
isometry. If it is an equality, they are related by unitary transformation.
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4 Quantum Communication

4.1 Basic Resources

The idea in resource simulation is to see how closely we can approximate the identity channel, or
more interestingly, an information processing channel.

We will observe how much classical information can be transmitted over both classical and
quantum channels & vice-versa.

4.1.1 Classical Information & Channels

We consider a basic chain of encoder-noise-decoder channel, and wish to see how well we can ap-
proximate identity: a typical Information Theory problem.

M

E

X

N

Y

D

M ‘

The probability of getting a corresponding input-output pair (M,M ′) is given by:

P (M =M ′) =
1

|M |
∑

m∈M
WM ′|M (m,m) (113)

i.e. the entire channel does not impede on the information transmission.
We can decompose WM ′|M into D ◦N ◦ E, yielding

P (M =M ′) =
1

|M |
∑

m∈M

∑
x∈X

∑
y∈Y

DM ′|Y (m, y)NY |X(y, x)EX|M (x,m) (114)

Since EX|M (x,m) ≤ 1 for all x and m, we get

P (M =M ′) ≤ 1

|M |
∑

m∈M

∑
x∈X

∑
y∈Y

DM ′|Y (m, y)NY |X(y, x) =
|X|
|M |

(115)

which is easily explained by the fact that we can consider E to be the communication bottleneck,
thus we could not transmit more than what E can produce; namely |X| symbols.

On the other hand, we can consider that NY |X could produce errors, and thus

P (M =M ′) ≤ 1

|M |
∑

m∈M

∑
x∈X

∑
y∈Y

DM ′|Y (m, y)EX|M (x,m) =
|Y |
|M |

(116)

Proposition 4.1. The upper bound on classical information over classical channels is

P (M =M ′)classical ≤
min(|X|, |Y |)

|M |
(117)

4.1.2 Classical Information & Quantum Channels

Our communication system now looks like
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M

E
A

N
B

D
M ‘

• The encoder channel EA|M creates a quantum density operator ρA(m) from classical message
m ∈ M.

• The quantum noise channel NB|A is an arbitrary quantum channel (trace-preserving & CP):
ρA(m) 7→ θB(m)

• The decoder channel DM ′|B applies a measurement from POVM element ΛB(m) and outputs
Tr[ΛB(m)θB(m)] i.e. it measures by ’looking for’ m

The probability of successful transmission is this

P (M =M ′) =
1

|M |
∑
m

Tr[ΛB(m)NB|A[ρA(m)]] (118)

Proposition 4.2. Again, considering the bottlenecks in EA|M or in EB|A, we get the bound of
information transmission over quantum channels

P (M =M ′)quantum ≤ min(|A|, |B|)
|M |

(119)

Thus, we have shown that if |A| = |X|, we get the same bounds, implying that a single qubit
channel cannot transport more than one bit of information. In this regard, quantum channels and
classical channels are seemingly equivalent.

4.1.3 Quantum Information & Classical Channels

When quantum information is being sent, we will have to adapt our notion of ’correct transmis-
sion’. A good ’metric’ of a correct transmission of information would be that the channel has
successfully sent an entangled qubit. This yields the following probability of success:

Pagree(NQ) = Tr[ΦQQ′NQ[ΦQQ′ ]] (120)

i.e. this quantity represents the probability of an entangled qubit to be transmitted through the
channel. In the following case,

Q

E
X

N

Y

D
Q′

suppose that

• EX|Q[ρQ] = Tr[ΛQ(x)ρQ(x)] for a given x ∈ X

• NY |X is a regular noise channel

• DQ′|Y [y] = ρQ(y) for the received classical y ∈ Y

Definition 4.3 (Separable State). A quantum state ψ in a composite quantum system is said
separable if it can be factored into individual states of subsystems.

An entangled state is by definition not separable
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Definition 4.4 (PPT States). A composite state is said PPT if it has positive partial transpose,
i.e. state ρAB such that TA[ρAB ] ≥ 0. Separable states are necessarily PPT.

Proposition 4.5 (PPT Bound). For any PPT state σAB and the maximally entangled state ΦAB,
it follows that

Tr[ΦABσAB ] ≤
1

|A|
(121)

We will consider the action of our channel on the maximally entangled state ΦQQ′ .

WQ′|Q[ΦQQ′ ] =
∑
xy

NY |X(y, x)ρQ(y)⊗ TrQ[ΛQ(x)ΦQQ′ ] (122)

The output is a separable state, since both quantum-classical channels actions are positive, and so
is N . Thus, by the PPT bound, we get

Tr[ΦQQ′NQ[ΦQQ′ ]] ≤ 1

|Q|
(123)

This implies that quantum information cannot be efficiently transmitted over classical channels
at all!

4.1.4 Quantum Information & Channels

Finally, our communication system is

Q

E
A

E
B

D
Q′

This case is a bit different. We consider the input to be a composite state |ΦQQ′⟩, and the output
to be a slightly altered state |ΦQQ′⟩. Thus, we want to measure the ’distance’ between |ΦQQ′⟩ and
|ΦQQ′⟩. This can be done by projecting the initial state onto the output, yielding

P (ρQQ′ = ΦQQ′) = ⟨ΦQQ′ |ρQQ′ |ΦQQ′⟩ = TrQQ′ [ΦQQ′ρQQ′ ] (124)

Since ΦQQ′ is a rank-one density operator, then it can count as a POVM to test whether ρQQ′ is a
match or not.

To analyse the system, we will need two important inequalities.

Proposition 4.6 (Pinching Inequalities). For an arbitrary system A and the pinching map PA in
an arbitrary orthonormal basis, we have for any SAB ≥ 0

SAB ≤ |A|PA[SAB ] (125)

and for any classical-quantum operator SXB, we have

SXB ≤ IX ⊗ SB (126)
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Combining the two properties yields a very useful inequality for all positive SAB :

SAB ≤ |A|I⊗ SB (127)

We know that ρA ≤ IA, so the probability of successful transmission of the maximally entangled
state can be written as

P (ρQQ′ = ΦQQ′) = TrQQ′ [ΦQQ′D[N [E [ΦQQ′ ]]]]

≤ TrQQ′ [ΦQQ′D[N [|A|IA ⊗ ΦQ′ ]]] = TrQQ′ [ΦQQ′D[N [
|A|
|Q|

IAQ′ ]]]

=
|A|
|Q|

TrQ[IQD[N [IA]TrQ[
1

|Q′|
IQΦQ]] =

|A|
|Q|2

TrQ[D ◦ N [IA]] =
|A|2

|Q|2

(128)

Again, by considering the bottleneck on NB|A, we can upper bound it by NB|A[ρA] ≤ NB|A[IA]
thus by trace-preserving property,

TrQQ′ [ΦQQ′DQ|B ◦ NB|A[ρAQ′ ]] = TrQQ′ [ΦQQ′DQ|B [ρBQ′ ]]

≤ TrQQ′ [ΦQQ′DQ|B [|B|IB ⊗ ΦQ′ ]] = ... =
|B|2

|Q|2
(129)

Proposition 4.7. Thus, the probability of successful transmission of quantum information over
quantum channels is upper bounded by

P (agree)quantum−quantum ≤ min(|A|2, |B|2|)
|Q|2

(130)

4.2 Superdense Coding and Teleportation

Assisted communication is a technique that requires an extra resource, in this case a quantum state
ρTT ′ , in which the system T is available to the sender and T ′ is available to the receiver.

Definition 4.8 (Superdense Coding). This protocol aims to transmit two classical bits over a noise-
less one-qubit quantum channel, while exploiting the shared entanglement of the state ΦTT ′ .

1. Alice wants to send two bits (j, k) to Bob

2. Alice applies (σj
Xσ

k
Z)T to the T subsystem of |Φ⟩TT ′

3. Alice transmits the system T over the noiseless quantum channel

4. Bob jointly measures TT ′ in the Bell basis, and Bob can thus reconstruct the two bits by
inferring from the output Bell state

Proposition 4.9. Superdense coding is a form of assisted classical communication over a quantum
channel, and thus satisfies the bound

Pagree ≤
min{|A|2, |B|2, |A||T |, |B||T |, |A||T ′|, |B||T ′|}

|M |
(131)

Definition 4.10 (Teleportation). This protocol puts the Bell measurement at the sender and the
Pauli operators at the receiver, while also exploiting the shared entangled system |Φ⟩QQ′ . The aim
is to transmit one qubit of quantum information over a two bit classical channel. The main goal
is to transmit a full qubit state using 2 classical bits. The entanglement in necessary
to the successful transmission.
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1. Alice measures the system AT in the Bell basis (A is her quantum system she wishes to trans-
mit)

2. Alice gets the measurement output (j, k) an transmits them classically

3. Bob then computes (σj
Xσ

k
Z)T ′ from the received bits

4. Bob applies the measurement on T ′ of |Φ⟩TT ′ , and can thus infer A

Proposition 4.11. Quantum teleportation is a form of assisted quantum communication over clas-
sical channels, and thus satisfies;:

Pagree ≤ min{ |X|
|Q|2

,
|Y |
|Q|2

,
|T |
|Q|

,
|T ′|
|Q|

} (132)

4.3 Information Disturbance

This quick section will simply show why information cannot simply be ’created’.
Suppose a quantum instrument QXA|A. If by tracing out the classical X output, we obtain the

identity, then necessarily,
QXA|A = PX ⊗ IA (133)

Proposition 4.12. Let QXB|A be a quantum instrument such that

TrB ◦ QXB|A = PX|A

where P is a pinch map for an arbitrary basis of A. Then there exists a set of density operators
φB(x) such that

QXB|A = EXB|X ◦ PX|A

for EXB|X : |x⟩⟨x|X 7→ |x⟩⟨x| ⊗ φB(x)

QXB|A EXB|X = QXB|A

4.4 Discriminating States & Channels

The idea of this section is to distinguish two quantum states ρ and σ. Imagine we have two devices
D0 and D1, which respectively produce ρ and σ.

D0 ρ D1 σ

Now imagine that we do not know which of the two systems is chosen, and a quantum state
is output, how do we figure out which one it is?

Formally, we will let X ∼ PX be a classical random variable taking value in {0, 1}, and ρ, σ are
states in a quantum system HB . We can thus reformulate our diagram as
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X ∈ {0, 1}
X

DX

B

ψ ∈ {ρ, σ}

To approximate the resource (D0 or D1), we can use a QC channel, which will hopefully correctly
’reconstruct’ X. This is a simple measurement channel, whose POVM elements are {Λ, I − Λ}
corresponding to ρ resp. σ.

Definition 4.13 (Conditional Probability of error). The probability of an incorrect guess (or recon-
struction) of X is denoted by

Perror = P [X̂ ̸= X] =

{
Tr[(I− Λ)ρ] if X=0

Tr[Λσ] if X=1
(134)

Suppose P [X = 0] = p, then the probability of guessing correctly becomes

Pguess = pTr[Λρ] + (1− p)Tr[(I− Λ)σ] = (1− p) + Tr[Λ(pρ− (1− p)σ)] (135)

We however lack a way to find this optimal measurement Λ∗. We will present two approaches to
find it.

4.4.1 Bayesian Hypothesis Testing

Classical Bayesian hypothesis testing is done by obeserviing the likelihood ratio.

P (X1|B)

P (X2|B)
=
P (B|X1)P (X1)

P (B|X2)P (X2)

{
> 1 =⇒ X1

< 1 =⇒ X2

(136)

Returning to our case, we have

pρ

(1− p)σ

{
> 1 =⇒ ρ

< 1 =⇒ σ
(137)

Since by assumption Λ must correspond to ρ and I − Λ must correspond to σ, then it makes
sense to have Λ ’project’ onto the space where pρ

(1−p)σ > 1 holds.

{ pρ

(1− p)σ
} > 1 ≡ {pρ− (1− p)σ > 0}

≡ {ρ− 1− p

p
σ > 0}

(138)

We thus define
Λ(γ) = {ρ− γσ > 0} (139)

the projection onto the positive space of {ρ− γσ}, which is maximal in 1−p
p . Formulated as varia-

tional problems, we wish to maximize

f(M) = max
Λ

{Tr[ΛM ] : 0 ≤ Λ ≤ I,Λ ∈ Lin(H)} (140)
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Since Λ ≤ I =⇒ ΛM ≤M , we can instead look for the minimal Θ ≥M .

f†(M) = min
Θ

{Tr[Θ] : Θ ≥M,Θ ∈ Lin(H)} (141)

By considering the eigenbasis ofM , we can writeM = {M > 0}M+{M ≤ 0}M?{M}++{M}−,
that M is the sum of it’s projective spaces. Since the contribution of {M}− will only decrease the
value of Tr[M ], it is now clear that Λ( 1−p

p ) is the optimal solution.

Since Tr[M ] = Tr[{M}+] + Tr[{M}−] and ||M ||1 = Tr[{M}1] − Tr[{M}−], our objective
function is

f(M) =
1

2
(||M ||1 + Tr[M ])

and we find that the optimal probability of guessing is

P (X|B)guess =
1

2
(1 + ||pρ− (1− p)σ||1)

4.4.2 Neyman-Pearson Hypothesis Testing

This method does not use priors. Rather first observe the testing region

R(ρ, σ) = {(α, β) : Tr[Λρ] = α, Tr[Λσ] = β, 0 ≤ Λ ≤ I} (142)

and we optimize (by minimizing) one error probability for a fixed success probability. In our
case, Tr[Λρ] is fixed, so we will minimize Tr[Λσ]. This yields the boundary of our testing region,
over which the minimum is the minimum error Tr[Λσ].

βα(ρ, σ) = min
Λ

{Tr[Λσ] : Tr[Λρ] = α, 0 ≤ Λ ≤ I} (143)

However, the optimal Λ for our case is not very clear, so we will try to reformulate by maximizing
over other parameters. Consider a positive density operator Θ. It then holds that

Tr[ΛΘ] ≤ Tr[Θ] =⇒ mTr[ΛΘ] ≥ mα− Tr[Θ]

Furthermore, we will then require that

Tr[Λσ] ≥ mTr[Λρ]− Tr[Θ] =⇒ σ ≥ mρ−Θ

Since we wish to minimize σ, we can make ends meet by maximizing mρ−Θ since Λ ≥ 0 will never
incur any sign changes.

Our problem is now

β†(ρ, σ) = max
m,Θ

{mα− Tr[Θ] : mρ−Θ ≤ σ : Θ ≥ 0,Θ ∈ Lin(H),m ∈ R} (144)

4.4.3 Semidefinite Programming

Both problems can be set up as semidefinite progams. We will first need a quick description. A
semidefinite program is an optimization problem that aims to find the infimum (resp. supremum)
of the trace od a matrix product, subject to inequality constraints. Formally,

inf
X
Tr[AX] s.t. L[X] ≤ B (145)

is the primal of a problem, and

sup
X
Tr[BY ] s.t. L∗[Y ] ≥ A (146)

is the dual statement.
In our case of distinguishability, we use a lot of block matrices to define the multiple conditions.
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4.4.4 Distinguishability Formula

After our derivation of how to discriminate states, we can now write it in closed form for p = 1
2 .

Definition 4.14 (Distinguishability of States). For two quantum states ρ, σ we have

δ(ρ, σ) = max
Λ

{Tr[Λ(ρ− σ)] : 0 ≤ Λ ≤ 1}

= min
θ

{Tr[θ] : θ ≥ ρ− σ, θ ≥ 0}

=
1

2
||ρ− σ||1

(147)

i.e. it is the maximal difference in trace that ρ and σ have under measurement Λ (interpretable as
probability of not mixing them up).

Definition 4.15 (Distinguishability of Channels). Two channels E ,F are simply maps from oper-
ators to operators. We will thus compare their output states given the same input

δ(E ,F) = max
ρAR

max
ΛBR

{Tr[ΛBR(E [ρAR]−F [ρAR])]} (148)

which is analogous to state distinguishability.

Proposition 4.16 (Properties of distinguishability). For all states ρ, σ, θ and channels E , E ′,F ,F ′,G

1. δ(ρ, θ) ≤ δ(ρ, σ) + δ(σ, θ) (triangle inequality)

2. δ(E ,F) ≤ δ(G ◦ E ,G ◦ F) (DPI)

3. δ(E ◦ F , E ′ ◦ F ′) ≤ δ(E ◦ E ′,F ◦ F ′) (monotonicity)

Another way to distinguish channels can be done via Choi and in SDP form:

Proposition 4.17. (SDP Form of Channel Distinguishability) Let EBA and E′
BA be the Choi op-

erators of the channels E and E ′ we are trying to distinguish. The the distinguishability is

δ(E , E ′) = max
ρA,ΓBA

{
Tr[ΓBA(EBA − E′

BA)] : Tr[ρA] = 1,ΓBA ≤ IB ⊗ ρTA, ρA ≥ 0
}

(149)

i.e. we are comparing the Choi operators, and ensuring that they are positive. What’s nice about
this is the independence to the environment R.

4.5 Optimal Receivers or Classical Information

Consider a CQ Channel NB|X , and the associated ’joint’ state

ρXB =
∑
x∈X

PX(x)|x⟩⟨x|X ⊗ φB(x)

We will be interested here in ways of determining x by measuring system B with ΛB(x). Associated
to ΛB(x), we can consider a measurement MX′|B , which would allow the formulation

Pguess(X|B) =
∑
x

PX(x)Tr[ΛB(x)φB(x)] = Tr[ΠXX′MX′|B [ρXB ]] (150)
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where ΠXX′ =
∑

x |xx′⟩⟨xx′|XX′ is a measurement of the event x = x′. We are essentially hoping
to find a measurement which will yield the joint of XX ′ = the marginal of X.

A bit of rewriting gives us:

Pguess(X|B) = 1− δ(MX′|B [ρXB ], PXX′) = max
Λ

{
∑
x

PX(x)Tr[ΛB(x)φB(x)]}

Proposition 4.18. For any CQ state ρXB, the optimal guessing probability is given by

Pguess(X|B) = max
Λ

{Tr[λXBρXB ]}, T rX [ΛXBρXB ] = IB , ΛXB ≥ 0 (151)

the dual form is
Pguess(X|B) = min

σB

{Tr[σB ]}, IX ⊗ σB ≥ ρXB (152)

4.5.1 Pretty Good Measurement

PPGM
guess (X|B)τ =

∑
x

PX(x)Tr[ΛB(x)φB(x)]

= Tr[(I⊗ τ
−1/2
B )τXB(I⊗ τ

1/2
B )τXB ]

(153)

Proposition 4.19. Moreover, the PGM satisfies

PPGM
guess (X|B)ρ ≥ Pguess(X|B)2ρ (154)

4.6 CHSH Game & Bell’s Theorem

This section will act as a constructive proof that quantum mechanics can offer statistical predictions
that are incompatible with classical probabilistic models.6

4.6.1 CHSH Game Setup & Classical Strategy

Alice and Bob each receive one bit x and y respectively, and will each output one bit a and b
respectively. Alice and Bob are not allowed to communicate, and win if a⊕ b = xy.

x y

Alice Bob

a b

Clearly, there is a higher chance that xy = 0, so the best strategy is for Alice and bob to both pick
a = b = 0. This strategy will allow them to have

Pr[A+B = XY ] ≤ 3

4
(155)

6basically Bell’s theorem statement
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4.6.2 Using Quantum Mechanics to Increase Win Probability

We will start by defining the following variables

a′x = (−1)ax b′y = (−1)by

We can now let these variables be ’assigned’ to particular Bloch vectors, i.e. we are now working
with qubits rather than bits.

a′x → âx · σ⃗ b′y → b̂y · σ⃗

Observing the quantities ⟨a′xb′y⟩, we can define winning conditions: i.e. we win if ⟨a′xb′y⟩ = 1 for all
cases except for x = 1, y = 1, where ⟨a′xb′y⟩ = −1. Thus,

Pr[A+B = XY ]quantum =
1

8
[4 + ⟨a′0b′0⟩+ ⟨a′0b′1⟩+ ⟨a′1b′0⟩ − ⟨a′1b′1⟩] (156)

Exploiting the entangled state |Φ11⟩ = 1√
2
(|01⟩ − |10⟩), we know that the average is

⟨Φ11|(â · σ⃗)(b̂ · σ⃗)|Φ11⟩ = −â · b̂ (157)

thus yielding

Pr[A+B = XY ]quantum =
1

8
[4− â0 · b̂0 − â0 · b̂1 − â1 · b̂0 + â1 · b̂1] (158)

For a correct choice of those values, we have that

Pr[A+B = XY ]quantum ≈ 85% ≥ 3

4

4.7 Channel Coding

Definition 4.20. A (k, ϵ) protocol for (classical) communication over noisy channel NX|B is a
pair (E ,D) such that |M | = k and δ(D ◦ N ◦ E , I) ≤ ϵ i.e. it is rather easily distinguishable.

M

E
X

N

B

D
M ′

Here we will derive an upper bound on k for (k, ϵ) coding schemes. The objective is to show that
this bound only depends on the channel i.e. whatever the encoder and the decoder,

k ≤ f(N , ϵ) (159)

Remark 13. Notice that if we derive an upper bound for the average case, i.e. not worst error,
then this average error ≤ worst-case error. Thus, from now on (k, ϵ) will designate the average error
protocol.

Remark 14. Also note that every (classical) stochastic map is a convex combination of deterministic
maps.

Considering the code (k, ϵ) is rather good (small ϵ), then the input M should resemble M ′ and it
becomes thus ’easy’ to distinguish the input-output distribution PM ′M from any product distribution
QM ′ ⊗ PM
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4.7.1 Converse Bound

Our communication system now looks as follows:

=

M

M

E
X

N

B

D
M ′

ΓM ′M

with M uniformly distributed.
Let ΓM ′M =

∑
|m,m⟩⟨m,m|M ′M be a measurement at the end of the system which checks for

PM ′M . By assumption of a (k, ϵ) code, we have

Tr[ΓM ′MPM ′M ] ≥ 1− ϵ (160)

Step 1: Defining the measurement ΛBM

Now let ωBM be the product state of the message and the output of NB|X , we thus have

Tr[ΓM ′MPM ′M ] = Tr[ΓM ′MDM ′|B [ωBM ]] = Tr[ΛBMωBM ] ≥ 1− ϵ (161)

for ΛBM = D∗
M ′|B [ΓM ′M ]

Step 2: Bounding the trace

Since ΛBM is feasible for any product state τBM , we can write via Neyman-Pearson7 that

β1−ϵ(ωBM , τBM ) ≤ Tr[ΛBMτBM ] (162)

Step 3: Using uniform prior

Let σB be an arbitrary density operator on HB , then by setting

τBM = σB ⊗ πM (163)

we can now split the trace into

Tr[ΛBM (σB ⊗ πM )] = Tr[ΓM ′M (D∗
M ′|B [σB ]⊗ πM )]

=
1

|M |
Tr[

∑
m

|m,m⟩⟨m,m|M ′M (QM ′ ⊗ IM )] =
1

k

∑
m

⟨m|QM ′ |m⟩M ′ =
1

k

(164)

7β1−ϵ(ωBM , τBM ) = min
Λ

{Tr[ΛτBM ] : Tr[ΛωBM ] = 1− ϵ} is minimal thus less than or equal
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Thus, we have that

β1−ϵ(ωBM , σb ⊗ πM ) ≤ 1

k
(165)

Step 4: Restricting from protocol to code

Since a code is simply ’smaller’ than a protocol, we can define

ωBX = NB|X=x ⊗ 1

k

∑
m

|xm⟩⟨xm| (166)

Thus the mapping via the inverse of E is possible (since codes are injective). Using the DPI, we
get

β1−ϵ(ωBX , ωX ⊗ σB) ≤ β1−ϵ(ωBM , πM ⊗ σB) (167)

Thus

max
σB

{β1−ϵ(ωBX , ωX ⊗ σB)} ≤ 1

k
(168)

However this is still encoder-dependent... By minimizing over PX we remove then encoder depen-
dence, and thus get our desired bound.

Remark 15. For symmetric channels, a uniform PX achieves these optimal bounds.

4.7.2 Achievability

This bound is the exact opposite of before. We want to show that for a fixed channel N , there exists
a (k, ϵ) code such that

k ≥ g(N , ϵ) (169)

By Shannon’s random coding argument, we can show that there exists a (k, ϵ) code by
considering the average error. If the average error probability is smaller than ϵ, then there must
exist at least one ϵ-good code.

Remark 16. This is not encoder design! This random coding argument only means that the
choice of encoder is random, but the encoders are still deterministic.

Definition 4.21. A pretty good measurement (PGM) is a measurement ΛB(x) defined by an
ensemble

τXB =
∑
x

PX(x)|x⟩⟨x|X ⊗ φB(x) (170)

The pretty good measurement is thus

ΛB(x) = τ
−1/2
B PX(x)φB(x)τ

1/2
B , τB = TrX [τXB ] =

∑
x

PX(x)φB(x) (171)

i.e. the PGM is essentially a measurement onto the support of {φB(x)}, which is the output of the
noisy channel.8

The previous statement is backed by the fact that
∑

x ΛB(x) = τ
−1/2
B τBτ

1/2
B

8Is very similar to a nearest-neighbour decoding scheme
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From this definition, we can now write out the probability of guessing correctly using the PGM:

PPGM
guess (X|B)τ =

∑
x

PX(x)Tr[ΛB(x)φB(x)]

= Tr[(I⊗ τ
−1/2
B )τXB(I⊗ τ

1/2
B )τXB ]

(172)

Proposition 4.22. For any CQ channel N and error ϵ, there exists a (k, ϵ) code with

1

k
≤ min

η∈[0,1]
max
PX

{1
η
β1−ϵ(ωBX , ωB ⊗ ωX)} (173)

for ωBX =
∑

x φB(x)⊗ |x⟩⟨x|X

4.8 Coding for i.i.d. Channels

We’ve already covered the rate of a channel, but now we will cover the capacity.

Definition 4.23. The capcaity of a CQ channel NB|X is the limit as ϵ→ 0 of the ϵ-capacity.

Proposition 4.24. For any CQ channel NB|X and associated ’joint’ state ωXB =
∑

x PX(x)|x⟩⟨x|X⊗
φB(x), we have

C(NB|X) = max
PX

{I(X;B)ω} (174)

The optimization over PX is convex, so mixtures of optimal distribtions are also optimal

4.9 Entropy & Capacity

We are focusing on classical communication over quantum channels, and have already seen that
the converse combined with the PGM yield a tight bound for error probability, given the size of a
message space.

Now, we will consider iid channels, and more specifically n-folds of them. I.e. if E is a channel,
then E⊗n is just like sending n bits over the same channel simultaneously.

Definition 4.25. The coding rate R of a channel is defined as

R =
log(k)

n

[
bits

use

]
(175)

This begs the question: what is the optimal rate?

Definition 4.26. For a fixed ϵ, the optimal rate is denoted C(N , ϵ). Asymptotically it is called the
capacity, and is defined as

C(N ) = lim
ϵ→0

C(N , ϵ) (176)

Using the fact that our channels are now considered iid, and assuming that /eta = ϵ/2, then we
have

C(N , ϵ) ≥ lim
n→∞

− 1

n
log(β1−ϵ/2(ω

⊗n
BX , (ωB ⊗ ωX)⊗n)) = 9D(ωBX , ωB ⊗ ωX) (177)

where D(ωBX , ωB ⊗ ωX) denotes the relative entropy.

D(ρ, σ) = Tr[ρ(log ρ− log σ)] (178)

We thus have
C(N , ϵ) ≥ max

PX

D(ωBX , ωB ⊗ ωX) = max
PX

I(X;B)ω (179)

9via AEP
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Definition 4.27. The entropy in a classical random variable X is defined as

H(X)P =
∑
X

PX(x) log

(
1

PX(x)

)
(180)

Definition 4.28. Quantum entropy is the entropy in a quantum state ρ over a system A, defined
as

H(A)ρ = −Tr [ρ log(ρ)] (181)

Notice that
H(A)ρ = −D(ρA, IA) = log(|A|)−D(ρA, πA) (182)

Proposition 4.29 (Klein & Stein’s Lemmas).

D(ρ, σ) ≥ 0, = iff ρ = σ (183)

∀α ∈ [0, 1], lim
n→∞

− 1

n
log(βα(ρ

⊗n, σ⊗n) = 10D(ρ⊗n, σ⊗n) (184)

Proposition 4.30. The properties of entropy:

1. H(A)ρ ≥ 0

2. H(A)UρU ‘∗ = H(A)ρ for unitary U

3. H(A)ρ ≤ log(|A|)

4. H(A)ρ ≥
∑

x PX(x)H(A)ρ(x) for ρ =
∑

x PX(x)ρ(x) =⇒ H(A)ρ is concave!

5. H(A)σ ≥ H(A)ρ for σ =
∑

x

∏
(x)ρ

∏
(x) a projective measurement

The last property implies that the entropy increases if we measure ρ with σ, and then forget the
measurement result.

Definition 4.31. The joint entropy of two systems is

H(AB)ρ = −D(ρAB , IAB) (185)

This is implies that for ρAB such that ρA = TrB [ρAB ] and ρB = TrA[ρAB ], the following holds:

1. H(A)ρ = H(B)ρ for ρ a pure state

2. H(AB)ρ ≤ H(A)ρ +H(B)ρ, with equality if ρAB = ρA ⊗ ρB

3. H(AB)ρ ≥ |H(A)ρ −H(B)ρ|

By extending the purification argument, if we have a tripartite state ρABC , then by purification it
holds that

H(B)ρ = H(AC)ρ (186)

10basically the AEP. The avg log error probability tends to relative entropy
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4.9.1 Log and Tensor Product

A useful property is
log(ρ⊗ σ) = (log(ρ)⊗ I) + (I⊗ log(σ)) (187)

thus, the relative entropy of ρAB and ρA ⊗ ρB is

D(ρAB , ρA ⊗ ρB) = Tr[ρAB(log(ρAB − log(ρA ⊗ ρ : B))]

= −H(AB)ρ − Tr[ρAB(log(ρA ⊗ IB)]− Tr[ρAB(IA ⊗ log(ρB))]

= −H(A)ρ − TrA[ρA log(ρA)]− TrB [ρB log(ρB)]

(188)

4.9.2 Conditional Entropy & Mutual Information

Definition 4.32. The conditional entropy of A given B is defined as

H(A|B)ρ = −D(ρAB , IA ⊗ ρB) = log(|A|)−D(ρAB , πA ⊗ ρB) (189)

Definition 4.33. The mutual information between systems A and B is defined as

I(A;B)ρ = D(ρAB , ρA ⊗ ρB) (190)

Proposition 4.34. The chain rules of entropy are:

1. H(A|B)ρ = H(AB)ρ −H(B)ρ

2. I(A;B) = H(A) +H(B)−H(AB) = H(A)−H(A|B)

3. H(A|B) = −H(A|C) for ρABC a pure state

4. |H(A|B)| ≤ log(|A|)

5. H(X|B) ≥ 0 for ρXB a CQ state

4.10 Entropic Uncertainty Relations

We will construct here two uncertainty relations, which will be used to argue that a particular game
cannot be won. Here is a model of two versions of the same game

1. Bob prepares a qubit A as he wishes
and delivers it to Alice

2. Alice randomly chooses M = X or Z
and announces what she got

3. Bob must emit a guess for the result of
A when measuring it in M (depending
on Alice’s result)

4. Alice performs the measurement M

5. Bob wins if his guess was correct

1. Bob prepares a qubit A as he wishes
and delivers it to Alice

2. Bob must emit a guess for the result
of A when measuring it in M for both
cases of M = X or M = Z

3. Alice randomly chooses M = X or Z
and announces what she got

4. Alice performs the measurement M

5. Bob wins if his guess was correct
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Clearly, Bob can always win version one, by preparing a bipartite state |Φ00⟩AB . This is
obvious since Bob can just ’replicate’ Alice’s announcement on B and know what A will produce by
entanglement.

In version 2 however, the fact that X and Z are orthogonal principles makes it more difficult. He
could prepare a tripartite state ρABC and store his guesses in B resp. C, but Bob’s measurements
do not commute. I.e. measuring X and then Z will not yield enough information to make an
adequate guess. This leads us to the following entropy uncertainty relations, explaining each version
of the game respectively:

Proposition 4.35. For any tripartite state ρABC ,

H(XA|B)ρ +H(ZA|B)ρ ≥ log |A|+H(A|B)ρ

H(XA|B)ρ +H(ZA|C)ρ ≥ log |A|
(191)

where
H(ZA|B)ρ = H(A|B)PA[ρAB ]

11 H(XA|B)ρ = H(A|B)P̃A[ρAB ]
12

This implies that storing one guess in B allows complete certainty if ρAB is entangled (entropy of
− log |A|), but two orthogonal guesses cannot be stored in BC.

These uncertainty relations allow us to place constraints on incompatible observables. Lastly,

Proposition 4.36. For a pure ρABC , if either ρAB or ρAC is CQ with classical part A in the X or
Z basis, then the second uncertainty relation is satisfied with equality.

4.11 Quantum Key Distribution

The idea of quantum key distribution is to privately communicate a key to then perform classical
encryption.

To ensure information-theoretic secure communication, we want the secret key channel via a
public channel to simulate a identity channel along with a simulator:

mathematically,
δ(NM ′E|M , PE ⊗ IM ′M ) ≤ ϵ (192)

11pinches in the |z⟩ basis
12pinches in the |x⟩ basis
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4.11.1 Problem Setup

In this section, we will consider the eavesdropper Eve to have access to 2 different attacks:

• impersonation attacks: Eve acts as Alice or Bob

• jamming attacks: Eve floods the quantum channel

The protocol of QKD considers that Alice & Bob have an outputK andK ′, indicating their produced
keys, as well as a flag bit each: F and F ′, which indicate whether their output (K or K ′) are good
or not.

Definition 4.37. A QKD protocol has as output a length-l key such that for any channel NBE|A,
there exists a simulator leading to output θKK′FPE such that

δ(ωKK′FPE , ]θKK′FPE) ≤ ϵ

4.11.2 BB84 Protocol

The main idea of this protocol is that Alice and Bob exploit the fact that measuring a qubit will col-
lapse it to the measuring basis to check whether someone has eavesdropped on their communication
on an assumed to be authenticated quantum channel. The steps can be boiled down to

1. Generate ’raw’ keys with qubits

2. Reconcile information with the observed rate of error

3. Privacy amplification to make the output keys

Definition 4.38. The BB84 protocol is defined by

• 6 integers (n, nx, nz, s, t, l)

• 2 real numbers: q ∈ [0, 1] and δ ∈ (0, 1−q
2 )

and follows the steps:

1. Alice randomly generates 2 n-bit strings Y and W , and generates an n-qubit string where W
selects the basis and Y selects the state:

Y = 0|W = 0 ∼ |0⟩, Y = 1|W = 0 ∼ |1⟩, Y = 0|W = 1 ∼ |+⟩, Y = 1|W = 1 ∼ |−⟩
(193)
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2. Bob generates the random bit string W ′ and measures Alice’s qubit string with W ′ as the same
basis selector. He stores his measurement results in Y ′

3. Alice announces W and Bob compares it to W ′. He checks which indices of his matches and
if there are less than nx and nz for their respective bases the protocol is aborted. If there are
enough, he saves the indices and sends them to Alice. They now have a shared sequence, called
the raw keys.

4. They then perform information reconciliation and privacy amplification (skipped here) to con-
struct the real keys

The general idea is that Alice send n qubits to Bob over an authenticated channel, which are
randomly in the X, Z basis, and random over (|0⟩, |1⟩) or (|+⟩, |−⟩). Bob will also measure these
incoming bits randomly. After that, Alice only reveals the sequence of bases she used, and Bob
discards those in which he measured in the wrong basis. They use this reduced bitstring as a key
for something like OTP.
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